Nov 162017
 

第 33 届中国数学奥林匹克

浙江 杭州

第一天

(2017 年 11 月 15 日    8:00–12:30)

1. 设 \(A_n\) 是满足以下条件的素数 \(p\) 的集合: \(\exists a\), \(b\in\Bbb N^+\), 使得 \(\dfrac{a+b}p\), \(\dfrac{a^2+b^2}{p^2}\) 都是正整数, 且

\[\Big(\frac{a+b}p, p\Big)=\Big(\frac{a^2+b^2}{p^2}, p\Big)=1.\]

证明: (1) \(A_n\) 为有限集当且仅当 \(n\ne2\);

(2) 记 \(f(n)=|A_n|\). 若 \(k\), \(m\) 为正奇数, \(d=(k, m)\), 则

\[f(d)\leqslant  f(k)+f(m)-f(km)\leqslant 2f(d).\]

2. 设

\[T=\{(x, y, z)|1\leqslant x, y, z\leqslant n\}\]

为空间中 \(n^3\) 个点. 将其中 \((3n^2-3n+1)+k\) 个点染为红色, 且若 \(P\), \(Q\) 为红色, \(PQ\) 平行于任一条坐标轴, 则线段 \(PQ\) 上的所有整点均为红色. 求证: 至少有 \(k\) 个边长为 \(1\) 的立方体的所有顶点均为红色.

3. 设 \(n\), \(q\) 为正整数, \(q\) 不是完全立方数. 求证: 存在正实数 \(c\) 满足
\[\{nq^{\frac13}\}+\{nq^{\frac23}\}\geqslant \frac c{\sqrt n}\]

对所有正整数 \(n\) 成立, 其中 \(\{\cdot\}\) 表示其小数部分.

第 33 届中国数学奥林匹克

浙江 杭州

第二天

(2017 年 11 月 16 日    8:00–12:30)

4.

 Posted by at 8:05 pm  Tagged with:

 Leave a Reply

(required)

(required)