May 302019
 

“苟日新,日日新,又日新”

作者: 秋水无涯

博尔赫斯曾经(大逆不道地)怀疑过所有经典文学作品的“永恒性”。在我看来,在数学中实践这种怀疑主义所要冒的风险要小得多。这是一门研究客观对象的学问(我无意卷入哲学上的争论,例如“理念”是否真实存在,数学家“发现”还是“发明”定理等等:实践者或多或少总能达成共识,而与旁观者争论是没意义的),认识总在进步。如果说有人站在巨人的肩膀上以至于觉得巨人并不高大,他大可不必为此感到羞愧。何况据说小平先生还没有他的夫人高呢。

经典的复分析理论是由3位风格各异的大师奠定的:Cauchy的积分表示观点,Weierstrass的幂级数表示观点和Riemann的复几何观点。近代恰好也有3位大师写过复分析的入门书:Ahlfors、H.Cartan以及小平邦彦。诚然,一本近代教材不可能只局限于介绍某种观点,甚至3种经典观点本身也无法截然分开,然而我们还是不难发现某种对应:

Ahlfors《复分析》最精彩的部分在于提供了一个从拓扑角度看完全清晰而现代的Cauchy积分定理。他毫不掩饰自己的分析学家趣味,自得其乐地(当然同时也让读者受益无穷)讨论着函数的各种表示,函数空间内的收敛性,椭圆函数论以及超几何函数论。这些论题覆盖了经典函数论的绝大部分内容,又出之以现代观点,使得此书在数十年间一直保持着第一参考书的地位。这是3本书中我读得最早也最钟爱的一本,虽然我并不强求它是完美的:在不引入Riemann面的情况下引入层论是相当勉强的,除了让叙述稍显摩登之外没有什么意义。

Cartan的《解析函数论》则处于一种尴尬的境地。他试图把Weierstrass观点摆到图像的中心,但这里有一个天然的(?)的限制:从积分表示构造幂级数表示要比从幂级数表示构造积分表示自然得多。因而他不得不在两种观点间来回跳跃,远不如Ahlfors宏大而一致。当然他的牺牲也获得了某种回报:Weierstrass观点可以毫不费力地推广到多变元(Cauchy的大部分函数论定理也仍然正确;高维的困难之处本质上是几何的)。

小平讨论了Riemann面,讨论了调和函数和“臭名昭著”的Dirichlet原理,讨论了Abel积分,也讨论了Riemann-Roch定理——他的这本著作几乎可以用来为Riemann招魂。这个膜拜Riemann的教派大概是由Klein创始的,一传到Weyl,再传到小平。然而从Riemann到小平已将近一个世纪,这种“复古”的风气难免显得有些怪异:在讨论全纯/亚纯形式的时候,小平偏要说Abel微分并把它分为一二三类;椭圆算子的正则性以及Hodge理论原本是他的拿手好戏,他却宁愿踩着Weyl引理-Dirichlet原理这条窄道小心前行:多么讽刺啊,以Hodge理论名震天下的小平邦彦,在写书的时候竟然连Hodge的名字都不敢提!这种“爱护”对学生有何好处呢?如果小平自己都莫名其妙地不置一词,初学者又怎么知道引理8.1和定理8.1在高维妙用无穷呢?

当然,有人会说:这个特例已很有代表性(在证明了RR定理的情况下尤其如此),何必用一般性去困扰学生呢?但我意不在此。我所惋惜的是这个例子明明可以把学生引导到当时的前沿领域,引向一些激动人心的进展,作为向导的小平却宁愿带着一帮人回头走向Riemann:这是何必、何苦?

我知道一些数学家有所谓“经典情结”。Weil就是典型的例子。总有人以他读Gauss全集“读”出了Weil猜想为例宣传挖掘经典的必要性,伍鸿熙先生甚至在介绍现代Riemann几何的书里鼓励年轻人去念Gauss、Riemann和Poincare。在我看来这是一种纯粹的误导:一方面,重新拾起那些被现代数学消化了的概念毫无必要;另一方面,在经典作品里找到遗珠并非不可能,但因此鼓励初学者去撞运气则是荒唐的,我也绝不相信伍先生自己的论文是这样写出来的。

曾有人问丘成桐先生学微分几何要读什么书。丘先生明确地表示Spivak并不合适:“他自己不是搞几何的专家。”说得明白一些,“历史趣味”对于研究至多是锦上添花,读丘成桐比读Gauss要有效得多:至于那些喜欢拿“谁更伟大”说事的人,他们自己往往什么都搞不出来。

从这个意义上来说,小平的复分析是一本好书:它好在内核是新的,用现代的观点处理了Riemann留下的一些古典论题(而并不是好在“小平先生是人人景仰的大师”这些不着边际的话)。但它又是一本太过保守的书,并不能把没有经验的读者带到更远处——很可能要等到他们念Griffiths-Harris的时候才能明白:“哦,原来这里是重要的。哦,原来小平先生处理问题的手法是受这些现代观点影响。哦,原来小平先生并不是踏雪无痕,而是过分小心地把自己思想的脚印一一擦掉了。”

Dec 272018
 

北京时间 2018 年 12 月 23 日下午初试的高等代数与解析几何

\(\Bbb R\) 表示实数域; \(\Bbb C\) 表示复数域; \( A^T\) 表示 \(A\) 的转置; \(E_{ij}\) 表示第 \(i\) 行第 \(j\) 列元素为 \(1\) 其余为 \(0\) 的矩阵.

1. \(\alpha_1,\alpha_2,\cdots,\alpha_r\) 是 \(\Bbb R^n\) 上线性无关的列向量组,\(\beta_1,\beta_2,\cdots,\beta_t\) 是 \(\Bbb R^m\) 上线性无关的列向量组. 若有实数 \(c_{ij}\) 使得

\[\sum_{i=1}^r\sum_{j=1}^tc_{ij}\alpha_i\beta_j^{T}=\textbf{0}.\]

证明系数 \(c_{ij}\) 全为 \(0\).

2.实数域上的 \(3\) 阶方阵 \(A\) 满足 \(AA^T=A^TA\), 且 \(A\neq A^T\).
(1) 证明存在正交矩阵 \(P\) 使得
\[P^TAP=
\begin{pmatrix}
a & 0 & 0 \\
0 & b & c \\
0 & -c & b \\
\end{pmatrix},\]

其中 \(a\), \(b\), \(c\) 都是实数.

(2) 若 \(A=\sum\limits_{i=1}^3\sum\limits_{j=1}^3a_{ij}E_{ij}\), \(AA^T=A^TA=I_3\), 且 \(|A|=1\).证明 \(1\) 是 \(A\) 的一个特征值, 且求属于特征值\(1\) 的特征向量.

3. \(A\) 是复数域上的一个 \(n\) 阶方阵, \(A\) 的特征值为\(\lambda_1,\cdots,\lambda_n\). 定义 \(M_n(\Bbb C)\) 上的变换 \(T\) 为

\[\begin{split}T\colon M_n(\Bbb C)&\longrightarrow M_n(\Bbb C)\\
B&\longmapsto AB-BA , \forall B\in M_n(\Bbb C)\end{split}\]

(1) 求变换 \(T\) 的特征值;
(2) 若 \(A\) 可对角化, 证明 \(T\) 也可对角化.

4. \(A\) 为 \(n\) 级实对称矩阵,令

\[S=\{X|X^TAX=0, X\in \Bbb R^n.\}\]

(1)求 \(S\) 为 \(\Bbb R^n\) 中的一个子空间的充要条件并证明;
(2)若 \(S\) 为 \(\Bbb R^n\) 中的一个子空间, 求 \(\dim S\).

5. 给定任意实数 \(\varepsilon\gt0\), 证明对任意的 \(n\) 阶实矩阵 \(A\), 存在一个 \(n\) 阶对角矩阵 \(D\), 每个对角元为 \(\varepsilon\) 或 \(-\varepsilon\) 中的一个,使得
\[|A+D|\ne 0.\]

6. 给了空间中两条异面直线的方程(不记得了),求两条直线的距离和公垂线方程.

7. 在空间中有三条直线两两异面,且不平行于同一个平面, 证明空间中与这三条直线都共面的直线集是一个单叶双曲面.

8. 证明平面与双曲抛物面的交线不可能是一个椭圆.

Dec 252018
 

北京时间 2018 年 12 月 23 日上午数学基础考试1

1. 讨论数列 \(a_n=\sqrt[n]{1+ \sqrt[n]{2+ \sqrt[n]{3+\dotsm+ \sqrt[n]n } } }\) (\(n\) 个根号) 的敛散性.

2. 设 \(f(x)\in C[a,b]\) 且 \(f(a)=f(b)\), 证明: \(\exists x_n\), \(y_n\in[a,b]\)s.t. \(\lim\limits_{n\to\infty}\big(x_n-y_n\big)=0\) 且 \(f(x_n)=f(y_n)\), \(\forall n\in \Bbb N\).

3. 证明 \(\sum\limits_{k=0}^n(-1)^kC_n^k\frac1{k+m+1}=
\sum\limits_{k=0}^n(-1)^kC_m^k\frac1{k+n+1} \), 其中 \(m\), \(n\) 是正整数.

4. 无穷乘积 \(\prod\limits_{n=1}^\infty(1+a_n)\) 收敛, 是否级数 \(\sum\limits_{n=1}^\infty a_n\) 收敛? 若是, 给出证明; 若不是, 举出例子.

5. 设 \(f(x)=\sum\limits_{n=1}^\infty x^n\ln x \), 计算 \(\int_0^1 f(x) \mathrm dx\).

6. 设函数 \(f(x)\) 在 \((0, +\infty)\) 二阶可导, 且 \(\lim\limits_{x\to+\infty}f(x)\) 存在,  \(f^{\prime\prime}(x)\) 有界. 证明: \(\lim\limits_{x\to+\infty}f^{\prime}(x)=0\).

7. 设数列 \(\{x_n\}\) 有界,  \(\lim\limits_{n\rightarrow\infty}(x_{n+1}-x_n)=0\), 且 \(\varliminf\limits_{n\rightarrow\infty}x_n=l\), \(\varlimsup\limits_{n\rightarrow\infty}x_n=L\)(\(l\lt L\)). 证明: \([l, L]\) 中的每一个点都是数列 \(\{x_n\}\) 的某一子列的极限.

8. 对 \(p\gt0\) 讨论级数  \(\sum\limits_{n=1}^\infty \dfrac{\sin\frac{n\pi}4}{n^p+\sin\frac{n\pi}4}\) 的绝对收敛性和收敛性.

9. 求函数 \(f(x)=\dfrac{2x\sin\theta}{1-2x\cos\theta+x^2}\) 在 \(x=0\) 点的 Taylor 展式, 其中 \(\theta\in\Bbb R\) 是常数, 并计算积分 \(\int_0^\pi\ln(1-2x\cos\theta+x^2) \mathrm d\theta\).

10. 证明 \(\int_0^{+\infty} \dfrac{\sin x}{x} \mathrm dx=\dfrac\pi2\), 并计算 \(\int_0^{+\infty} \dfrac{\sin^2 yx}{x^2} \mathrm dx \).

May 202018
 

2018 年IMO 国家队队员李一笑——来自江苏天一中学——的大作 “2018 年国家集训队第一阶段选拔试题及解答”. 文档转载自数学新星网.

2018 China IMO team selection test part one

2018 年国家集训队第二阶段选拔试题来自贴吧

2018 China IMO team selection test

2018 China IMO team selection test part two 1

2018 China IMO team selection test

2018 China IMO team selection test part two 2

2018 China IMO team selection test

2018 China IMO team selection test part two 3

2018 China IMO team selection test

2018 China IMO team selection test part two 4

 Posted by at 8:41 am
May 112018
 

Theorem. There does not exist a group whose commutator subgroup is isomorphic to \(S_4\).

The relevant facts are that \(S_4\) is a complete group(no outer automorphisms, trivial center) which is not perfect(that is, the commutator subgroup of \(S_4\) is not \(S_4\) itself). Any group which has these properties is never a commutator subgroup of anything. Here’s why.

Lemma. If \(K\) is a complete group and \(K\lhd G\), then \(G\) is the direct product \(K\times H\) of \(K\) by its centralizer \(H=C_G(K)\).

In other words, a complete group can be a normal subgroup only in the most trivial fashion: the large group is just a direct product of the normal group by something.

Proof of the lemma. Let \(H=C_G(K)\) be the centralizer of \(K\) in \(G\), namely the set of all elements which commute with all elements of \(K\). \(H\) is a normal subgroup of \(G\), and \(H\cap K=Z(K)=1\) since \(K\) has trivial center. Any element \(g\in G\) induces an automorphisms \(\phi_g\) of \(K\) by conjugation: \(\phi_g(k)=g^{-1}kg\). But \(K\) has no outer automorphisms, so \(\phi_g\) must equal some inner automorphism of \(K\), that is, for some \(k\in K\), \(\phi_g=\phi_k\). Now conjugation by \(gk^{-1}\) does nothing to \(K\), so \(gk^{-1}=h\in H\). In other words \(g=kh\): every element of \(G\) is expressible as product of an element of \(K\) and an element of \(H\). Since \(H\) and \(K\) commute, \(G\) is the direct product of \(H\) and \(K\).            \(\Box\)

Proof. Now suppose that \(G\) is some group such that \(K=G^\prime=[G,G]\), the commutator subgroup, is such that \(K\) is complete and non-perfect. By the lamma, \(G=K\times A\) where \(A\cong G/K\) is an abelian group. So any element of \(G\) can be writeen as \(ka\) with \(k\in K\) and \(a\in A\), and moreover, \(ka=ak\) for any \(k\in K\), \(a\in A\).

Consider a commutator \(c=xyx^{-1}y^{-1}\) in \(G\). Write \(x=ka\) and \(y=lb\). Since \(K\) and \(A\) commute, \(c=aba^{-1}b^{-1}xyx^{-1}y^{-1}\). Since \(A\) is abelian, the first part vanishes and \(c=xyx^{-1}y^{-1}\). So any commutator of \(G\) lies in the commutator sungroup of \(K\), and it follows that \(G^\prime=K^\prime\). Since \(K^\prime\ne K\), \(G^\prime\ne K\), as well.

It remains to show that \(S_4\) is complete and non-perfect.

(i) \(S_4\) has trivial center: this is obvious. No permutation commutes with all other permutations.

(ii) \(S_4\) has no outer automorphisms. This is true for all \(S_n\) except \(n=2\), \(6\). It’s a standard result.

(iii) \(S_4\) is not perfect. This is also ovious: for any two permutations \(\sigma\), \(\tau\in S_n\), the commutator \(\sigma^{-1}\tau^{-1}\sigma\tau\) is an even permutation, so the commutator subgroup is contained in the alternating group \(A_n\). In fact the commutator group eauals \(A_n\), but we don’t need that here.

This completes the proof the theorem.                                  \(\Box\)

Remark. a simple modification: \(K^\prime\subset G^\prime\) is clear, and the other direction follows since \(G/K^\prime=K/{K^\prime\times A}\) is abelian.

Here is a proof not using those well-known facts about \(S_4\). (though it’s easy to derive them with it)

Proof. \(S_4\) has exactly \(4\) Sylow  \(3\)-subgroups

\[P_1=\langle(234)\rangle, P_2=\langle(134)\rangle, P_3=\langle(124)\rangle, P_4=\langle(123)\rangle,\]

where \(P_i\) is the only Sylow \(3\)-subgroup of the stabilizer of \(i\) in \(S_4\) for \(i=1\), \(2\), \(3\), \(4\). So \(\sigma P_i\sigma^{-1}=P_{\sigma(i)}\) for all \(\sigma\in S_4\) and \(i=1\), \(2\), \(3\), \(4\).

Assume \(G^\prime=S_4\) and take \(g\in G\). The conjugation with \(g\) permutes \(P_1\), \(P_2\), \(P_3\), \(P_4\), so we find \(\rho\in G\) with \(g P_ig^{-1}=P_{\rho(i)}=\rho P_i\rho^{-1}\) for \(i=1\), \(2\), \(3\), \(4\). So \(h\colon \rho^{-1}g\in G\) satisfies \(h P_ih^{-1}=P_i\) for \(i=1\), \(2\), \(3\), \(4\).

Then for all \(\sigma\in S_4\) we have also \(h^{-1}\sigma h\in S_4\) and

\begin{equation} \begin{split}P_{h^{-1}\sigma h(i)}&=(h^{-1}\sigma h)P_i(h^{-1}\sigma h)^{-1}\\&=h^{-1}\sigma hP_ih^{-1}\sigma^{-1}h\\&=h^{-1}\sigma P_i\sigma^{-1}h\\&= h^{-1} P_{\sigma(i)}h=P_{\sigma(i)}.\end{split} \end{equation}

and therefore \(h^{-1}\sigma h(i)=\sigma(i)\) for \(i=1\), \(2\), \(3\), \(4\).

This gives \(h\in C_G(S_4)\) and \(g=\rho h\in S_4C_G(S_4)\) for all \(g\in G\). So \(G=S_4C_G(S_4)\) and \(|G\colon A_4C_G(S_4)|\leqslant2\). But then \(A_4C_G(S_4)\trianglelefteq G\) with abelian factor, so \(S_4=G^\prime\leq A_4C_G(S_4)\), and by Dedekind we get

\[S_4=A_4C_G(S_4)\cap S_4=A_4(C_G(S_4)\cap S_4)=A_4Z(S_4)=A_4\]

since \(Z(S_4)=1\), as \(\sigma\in Z(S_4)\) would give \(P_i=\sigma P_i\sigma^{-1}=P_{\sigma(i)}\) and \(i=\sigma(i)\) for \(i=1\), \(2\), \(3\), \(4\). Contradiction!

 Posted by at 11:43 am
Feb 122018
 

北京时间 2017 年 12 月 24 日上午的数学分析

下面的试题, 除了第 3 与第 5 题与实际考卷稍有出入, 其余的题与考场上卷子的用词句子甚至排版都是完全一模一样的!

1. 证明如下极限:

(1)  \(\lim\limits_{n\to\infty}\Big(1+\int_0^1\dfrac{\sin^n x}{x^n}\;dx\Big)^n=+\infty\);
(2)  \(\lim\limits_{n\to\infty}\Big(\int_0^1\dfrac{\sin x^n}{x^n}\;dx\Big)^n=\prod\limits_{k=1}^{+\infty}e^{\frac{(-1)^k}{2k(2k+1)!}}\);
(3) \(\lim\limits_{n\to\infty}\dfrac1n\sum\limits_{k=1}^n\ln\Big(1+\dfrac{k^2-k}{n^2}\Big)=\ln 2-2+\dfrac\pi2\).

2. \(f\in C(0,1)\), \(\dfrac{f(x_2)-f(x_1)}{x_2-x_1}=\alpha\lt\beta=\dfrac{f(x_4)-f(x_3)}{x_4-x_3}\), 这里 \(x_1\), \(x_2\), \(x_3\), \(x_4\in(0, 1)\). 证明: 对任意 \(\lambda\in(\alpha, \beta)\), 存在 \(x_5\), \(x_6\in(0, 1)\), 使得 \(\lambda=\dfrac{f(x_6)-f(x_5)}{x_6-x_5}\).

3. 设 \(\gamma\) 是联结 \(\Bbb R^3\) 中两点 \(A\), \(B\) 的长度为 \(L\) 的光滑曲线, \(U\) 是包含 \(\gamma\) 的 \(\Bbb R^3\) 中的开集, \(f\) 在 \(U\) 中的两个偏导数存在且在 \(\gamma\) 上连续. 梯度 \(\nabla f\) 的长度在 \(\gamma\) 上的界为 \(M\). 证明:

\[|f(A)-f(B)|\leqslant ML.\]

4. \(f\) 在 \((0, 0)\) 点局部三阶连续可微, \(D_R\) 表示圆盘: \(x^2+y^2\leqslant R^2\). 计算:

\[\lim_{R\to0^+}\dfrac1{R^4}\iint_{D_R}\Big(f(x, y)-f(0, 0)\Big) dxdy.\]

5. \(\varphi(x)\) 在 \(0\) 处可导, \(\varphi(0)=0\), \(f(x,y)\) 在 \((0,0)\) 点局部 \(2\) 阶连续可微, \(f\) 的两个偏导数在 \((x,\varphi(x) )\) 上恒为 \(0\). \(\big(\partial_{ij}f(0, 0)\big)_{2\times2}\) 为半正定非 \(0\) 阵. 证明 \(f\) 在 \((0, 0)\) 为取极小值.

6. 证明: \(e^{-x}+\cos2x+x\sin x=0\)
在区间 \(\big((2n-1)\pi, (2n+1)\pi\big)\) 恰有两个根 \(x_{2n-1}\lt x_{2n}\),
\(\forall n=1\), \(2\), \(3\), \(\dotsc\).
证明如下极限存在并求之: \(\lim\limits_{n\to\infty}(-1)^{n-1}n(x_n-n\pi)\).

7. 证明: \(\lim\limits_{x\to0}\sum\limits_{n=1}^\infty\dfrac{\cos nx}n=+\infty\).

8. \(\forall x\in[1,+\infty)\), \(f(x)\gt0\), \(f^{\prime\prime}(x)\leqslant0\), 且 \(\lim\limits_{x\to+\infty}f(x)=+\infty\). 证明如下极限存在并求之:

\[\lim_{s\to0+}\sum_{n=1}^\infty\frac{(-1)^{n-1}}{f^s(n)}.\]