Feb 122018
 

北京时间 2017 年 12 月 24 日上午举行的硕士研究生初试的数学分析

1. 证明如下极限:

(1)  \(\lim\limits_{n\to\infty}\Big(1+\int_0^1\dfrac{\sin^n x}{x^n}\;dx\Big)^n=+\infty\);
(2)  \(\lim\limits_{n\to\infty}\Big(\int_0^1\dfrac{\sin x^n}{x^n}\;dx\Big)^n=\prod\limits_{k=1}^{+\infty}e^{\frac{(-1)^k}{2k(2k+1)!}}\);
(3) \(\lim\limits_{n\to\infty}\dfrac1n\sum\limits_{k=1}^n\ln\Big(1+\dfrac{k^2-k}{n^2}\Big)=\ln 2-2+\dfrac\pi2\).

2. \(f\in C(0,1)\), \(\dfrac{f(x_2)-f(x_1)}{x_2-x_1}=\alpha\lt\beta=\dfrac{f(x_4)-f(x_3)}{x_4-x_3}\), 这里 \(x_1\), \(x_2\), \(x_3\), \(x_4\in(0, 1)\). 证明: 对任意 \(\lambda\in(\alpha, \beta)\), 存在 \(x_5\), \(x_6\in(0, 1)\), 使得 \(\lambda=\dfrac{f(x_6)-f(x_5)}{x_6-x_5}\).

3. 设 \(\gamma\) 是联结 \(\Bbb R^3\) 中两点 \(A\), \(B\) 的长度为 \(L\) 的光滑曲线, \(U\) 是包含 \(\gamma\) 的 \(\Bbb R^3\) 中的开集, \(f\) 在 \(U\) 中的两个偏导数存在且在 \(\gamma\) 上连续. 梯度 \(\nabla f\) 的长度在 \(\gamma\) 上的界为 \(M\). 证明:

\[|f(A)-f(B)|\leqslant ML.\]

4. \(f\) 在 \((0, 0)\) 点局部三阶连续可微, \(D_R\) 表示圆盘: \(x^2+y^2\leqslant R^2\). 计算:

\[\lim_{R\to0^+}\dfrac1{R^4}\iint_{D_R}\Big(f(x, y)-f(0, 0)\Big) dxdy.\]

Dec 252016
 

北京时间 25 日上午举行的硕士研究生初试的数学分析

1.(10分) 证明: \(\lim\limits_{n \to +\infty }\int_{0}^{\frac{\pi }{2}}\frac{\sin ^nx}{\sqrt{\pi -2x}}dx=0.\)

2.(10分) 证明: \(\sum\limits_{n=1}^{\infty }\frac{1}{1+nx^2}\sin \frac{x}{n^\alpha }\) 在任何有限区间上一致收敛的充要条件是 \(\alpha \gt \frac12\).

3.(10分) 设\(\sum\limits_{n=1}^\infty a_n\) 收敛. 证明 \(\lim\limits_{s\rightarrow 0+}\sum\limits_{n=1}^{\infty }a_nn^{-s}=\sum\limits_{n=1}^\infty a_n\).

4.(10分) 称 \(\gamma (t)=(x(t),y(t))\)(\(t\in \) 属于某个区间\(I\)) 是 \(\Bbb R^2\)上\(C^1\) 向量场 \((P(x,y),Q(x,y))\) 的积分曲线, 若 \({x}'(t)=P(\gamma (t))\), \({y}'(t)=Q(\gamma (t)),\forall t\in I\), 设 \(P_x+Q_y\) 在 \(\Bbb R^2\) 上处处非零, 证明向量场 \((P,Q)\) 的积分曲线不可能封闭(单点情形除外).

5.(20分) 设 \(x_0=1,x_n=x_{n-1}+\cos x_{n-1}, n=1,2,\dotsc \). 证明: 当 \(x\rightarrow \infty \) 时, \(x_n-\frac{\pi }{2}=o(\frac{1}{n^n})\).

6.(20分) 设 \(f\in C[0,1],\lim\limits_{x\rightarrow 0+}\frac{f(x)-f(0)}{x}=\alpha \lt \beta =\lim\limits_{x\rightarrow 1-}\frac{f(x)-f(1)}{x-1}\). 证明: \(\forall \lambda \in (\alpha ,\beta),\exists x_1,x_2\in [0,1]\), 使得 \( \lambda =\dfrac{f(x_2)-f(x_1)}{x_2-x_1}\).

7. (20分) 设 \(f\) 是 \((0,+\infty)\) 上的凸(或凹)函数且 \(\displaystyle \lim_{x\to+\infty}f(x)\) 存在有限, 则 \(\displaystyle \lim_{x\to+\infty}xf'(x)=0\) (仅在 \(f\) 可导的点考虑极限过程).

8. (20分)设 \(\phi\in C^3(\mathbb{R}^3)\), \(\phi\) 及其各个偏导数 \(\partial_i\phi(i=1,2,3)\) 在点 \(x_0\in \mathbb{R}^3\) 处取值都是 \(0\). \(x_0\) 点的 \(\delta\) 邻域记为 \(U_\delta(\delta>0)\). 如果 \(\left(\partial_{ij}^2\phi(X_0)\right)_{3\times 3}\) 是严格正定的, 则当 \(\delta\) 充分小时, 证明如下极限存在并求之:

\[\mathop {\lim }\limits_{t \to  + \infty } t^{\frac32}\iiint_{{U _\delta }} {{e^{ – t\phi\left( {x_1,x_2,x_3} \right)}}\,dx_1dx_2dx_3} .\]

9. (30分) 将\((0,\pi)\)上常值函数 \(f(x)=1\) 进行周期 \(2\pi\) 奇延拓并展为正弦级数:

\[f(x)\sim \frac4\pi\sum_{n=1}^\infty \frac1{2n-1}\sin (2n-1)x.\]

该 Fourier 级数的前\(n\)项和记为\(S_n(x)\), 则 \(\displaystyle \forall x\in (0,\pi), S_n(x)=\frac2\pi\int_0^x\frac{\sin 2nt}{\sin t}dt\), 且 \(\displaystyle \lim_{n\to\infty}S_n(x)=1\). 证明 \(S_n(x)\) 的最大值点是 \(\displaystyle \frac\pi{2n}\) 且 \(\displaystyle\lim_{n\to\infty}S_n\left(\frac\pi{2n}\right)=\frac 2\pi \int_0^\pi\frac{\sin t}t dt\).

Peking university 2017 mathematics postgraduate entrance examination–Mathematics Basic examination 1

Dec 282015
 

北京时间 27 日下午举行的硕士研究生初试的高等代数与解析几何

1. 在 \(\Bbb R^3\)上定义线性变换 \(A\), \(A\) 在自然基

\[\varepsilon_1=\left(\begin{array}{c}
1\\
0\\
0\end{array}\right),\varepsilon_2=\left(\begin{array}{c}
0\\
1\\
0\end{array}\right),\varepsilon_3=\left(\begin{array}{c}
0\\
0\\
1\end{array}\right)\]

下的矩阵为

\[\left(\begin{array}{ccc}
0&1&-1\\
0&0&1\\
0&0&0\end{array}\right)\]

求 \(\Bbb R^3\) 的一组基,使得 \(A\) 在这组基下具有 Jordan 标准型.

2. \(3\) 阶实矩阵 \(A\) 的特征多项式为 \(x^3-3x^2+4x-2\). 证明 \(A\) 不是对称阵, 也不是正交阵

3. 在所有 \(2\) 阶实方阵上, 定义二次型 \(f\colon X \rightarrow Tr(X^2)\). 求 \(f\) 的秩和符号差.

4. 设 \(V\) 是有限维线性空间, \(A\), \(B\)是 \(V\) 上线性变换满足下面条件
(1) \(AB=O\), 这里 \(O\) 是 \(0\) 变换;
(2) \(A\) 的任意不变子空间也是 \(B\) 的不变子空间;
(3) \(A^5+A^4+A^3+A^2+A=O\).
证明 \(BA=O\).

5. 设 \(V\) 是全体次数不超过 \(n\) 的实系数多项式组成的线性空间, 定义线性变换 \(A\colon f(x)\rightarrow f(1-x)\). 求 \(A\) 的特征值和对应的特征子空间.

6. 计算如下的行列式,各行底数为等差数列,各列底数也为如此,所有指数都是 \(50\):

\[\left|\begin{array}{ccccc}
1^{50}&2^{50}&3^{50}&\cdots &100^{50}\\
2^{50}&3^{50}&4^{50}&\cdots &101^{50}\\
\vdots&\vdots&\vdots&\vdots&\vdots\\
100^{50}&101^{50}&102^{50}&\cdots& 199^{50}\\\end{array}\right|\]

7.设 \(V\) 是复数域上有限维线性空间 \(A\) 是 \(V\) 上线性变换, \(A\) 在一组基下矩阵为 \(F\).
(1) 若 \(A\) 可对角化对任意 \(A\) 的不变子空间 \(U\), 存在 \(U\) 的一个补空间 \(W\) 是 \(A\) 的不变子空间;
(2) 若对任意 \(A\) 的不变子空间 \(U\),存在 \(U\) 的一个补空间 \(W\) 是 \(A\) 的不变子空间,证明 \(F\) 可对角化.

8. 平面上一个可逆仿射变换将一个圆映为椭圆(或圆).详细论证这一点

9. 平面 \(Ax+By+Cz+D=0\) 与双曲抛物面 \(2z=x^2-y^2\) 交于两条直线
证明 \(A^2-B^2-2CD=0\).

10. 正十二面体有12个面, 每个面为正五边形, 每个顶点连接3条棱. 有一个半径为 \(r\) 的球与它的各个面都相切, 有一个半径为 \(R\) 的中心在原点的球通过它的所有顶点. 求 \(\dfrac rR\).

Dec 272015
 

北京时间 27 日上午举行的硕士研究生初试的数学分析

1. 用开覆盖定理证明闭区间上的连续函数必一致连续.

2.  \(f(x)\) 是 \([a,b]\) 上的实函数. 叙述关于 Riemann 和

\[\sum_{k=1}^n f(t_i)(x_i-x_{i-1})\]

的Cauchy准则(不用证明), 并用你叙述的Cauchy准则证明闭区间上的单调函数可积.

3. \((a,b)\) 上的连续函数 \(f(x)\) 有反函数.证明反函数连续

4. \(f(x_1,x_2,x_3)\)是 \(C^2\)映射,

\[\frac{\partial f}{\partial x_1}(x_1^0,x_2^0,x_3^0)\not =0\]

证明关于 \(f\) 的隐函数定理 \(x_1=x_1(x_2,x_3)\). 证明 \(x_1=x_1(x_2,x_3)\) 二次可微并求出 \(\frac{\partial^2 x_1}{\partial x_2\partial x_3}\) 的表达式.

5. \(n\ge m\), \(f\colon U\subseteq R^n\rightarrow R^m\) 是 \(C^1\) 映射, \(U\) 为开集且 \(f\) 的 Jacobi 矩阵秩处处为 \(m\). 证明 \(f\) 将 \(U\) 中的开集映为开集.

6. \(x_1=\sqrt{2}\), \(x_{n+1}=\sqrt{2+x_n}\), \(n=1\), \(2\), \(\dotsc\). 证明 \(\{x_n\}\) 收敛并求极限值.

7. 证明 \(\int_0^{+\infty}\frac{\sin x}x \mathrm dx\) 收敛, 并求值(写出计算过程)

8. (A)证明若 \([a,b]\)上的多项式序列 \(p_n(x)\)使得 \(\int_a^b p_n^2(x)dx=1\), \(\int_a^b p_m(x)p_n(x)dx=0\), \(m\ne n\), 并使得对于 \([a,b]\) 上的连续函数 \(f(x)\) 若 \(\int_a^b f(x)p_n(x)dx=0,\forall n\) 必有\(f\equiv 0\). (B)设 \(g(x)\) 在 \([a,b]\) 平方可积, \(g\) 关于 A 中 \(p_n\) 的展式系数为 \(g(x)\sim\int_a^b g(x)p_n(x)dx\)问 \(\int_a^b g^2(x)dx=\sum_{n=1}^{+\infty}\left[\int_a^b g(x)p_n(x)dx\right]^2\)是否成立?

9. 正项级数 \(\sum\limits_{n=1}^{+\infty} a_n\) 收敛, \(\lim\limits_{n\to +\infty}b_n=0\). \(c_n=a_1b_n+a_2b_{n-1}+\dots +a_nb_1\). 证明 \(\{c_n\}\) 收敛并求 \(\lim\limits_{n\to +\infty}c_n\).

10. 幂级数 \(\sum\limits_{n=1}^{+\infty} a_nx^n\) 收敛半径为 \(R\), \(0\lt R\lt+\infty\). 证明 \(\sum\limits_{n=1}^{+\infty} a_nR^n\) 收敛的充要条件为 \(\sum\limits_{n=1}^{+\infty} a_nx^n\) 在 \([0,R)\)一致收敛.

Dec 282014
 

北京时间 28 日上午举行的硕士研究生初试的数学分析

1. 计算 \(\lim\limits_{x\to0^+}\dfrac{\int_0^x e^{-t^2}\,\mathrm dt-x} {\sin x-x}\).

2. 论证积分 \(\int_1^{+\infty}\left[\ln\left(1+\frac1x\right)-\sin{\frac1x}\right]\,\mathrm dx\) 的敛散性.

3. 函数 \(f(x,y)=\begin{cases}\left(1-\cos\frac{x^2}y\right)\sqrt{x^2+y^2}, &y\ne0;\\0, & y=0.\end{cases}\) \(f(x,y)\) 在 \((0,0)\) 是否可微? 说明理由.

4. 计算 \(\int_L e^x\left[\left(1-\cos y\right)\,\mathrm dx-\left(y-\sin y\right)\,\mathrm dy\right]\), 这里 \(L\) 是曲线 \(y=\sin x\) 从 \((0,0)\) 到 \((\pi,0)\).

5. 证明函数级数 \(\sum\limits_{n=0}^\infty\dfrac{\cos{nx}}{n^2+1}\) 在 \((0,2\pi)\) 一致收敛, 并且在 \((0,2\pi)\) 有连续导数.

6. \(x_0=1\), \(x_{n+1}=\dfrac{3+2x_n}{3+x_n}\), \(n\geq 0\). 证明序列 \(\{x_n\}\) 收敛并求其极限.

7. 函数 \(f\in C^2(\Bbb R^2)\), 且对于任意 \((x,y)\in \Bbb R^2\), \(\dfrac{\partial^2 f}{\partial x^2}(x,y)+\dfrac{\partial^2 f}{\partial y^2}(x,y)\gt0\). 证明: \(f\) 没有极大值点.

8. \(f\) 在 \([a,b]\) 连续, 在 \((a,b)\) 可导, 且 \(f(b)\gt f(a)\). \(c=\dfrac{f(b)-f(a)}{b-a}\). 证明: \(f\) 必具备下述两条性质中的一个:
(1) 任意 \(x\in[a,b]\), 有 \(f(x)-f(a)=c(x-a)\);
(2) 存在 \(\xi\in(a,b)\), 使得 \(f^\prime(\xi)\gt c\).

9. \(\mathbf F\colon\Bbb R^3\to\Bbb R^2\) 是 \(C^1\) 映射, \(\mathbf F(x_0)=y_0\), \(x_0\in\Bbb R^3\), \(y_0\in\Bbb R^2\), 且 \(\mathbf F\) 在 \(x_0\) 处的 Jacobi 矩阵 \(\mathbf{DF}(x_0)\) 的秩为 \(2\). 证明: 存在 \(\varepsilon\gt0\), 以及 \(C^1\) 映射 \(\gamma(t)\colon(-\varepsilon,\varepsilon)\to\Bbb R^3\), 使得 \(\gamma^\prime(0)\) 是非零向量, 且 \(\mathbf F(\gamma(t))=y_0\).

10. \(U\subseteq\Bbb R^n\) 为开集, \(f\colon U\to\Bbb R^n\) 是同坯映射, 且 \(f\) 在 \(U\) 上一致连续. 证明: \(U=\Bbb R^n\).