Dec 282015
 

北京时间 27 日下午举行的硕士研究生初试的高等代数与解析几何

1. 在 \(\Bbb R^3\)上定义线性变换 \(A\), \(A\) 在自然基

\[\varepsilon_1=\left(\begin{array}{c}
1\\
0\\
0\end{array}\right),\varepsilon_2=\left(\begin{array}{c}
0\\
1\\
0\end{array}\right),\varepsilon_3=\left(\begin{array}{c}
0\\
0\\
1\end{array}\right)\]

下的矩阵为

\[\left(\begin{array}{ccc}
0&1&-1\\
0&0&1\\
0&0&0\end{array}\right)\]

求 \(\Bbb R^3\) 的一组基,使得 \(A\) 在这组基下具有 Jordan 标准型.

2. \(3\) 阶实矩阵 \(A\) 的特征多项式为 \(x^3-3x^2+4x-2\). 证明 \(A\) 不是对称阵, 也不是正交阵

3. 在所有 \(2\) 阶实方阵上, 定义二次型 \(f\colon X \rightarrow Tr(X^2)\). 求 \(f\) 的秩和符号差.

4. 设 \(V\) 是有限维线性空间, \(A\), \(B\)是 \(V\) 上线性变换满足下面条件
(1) \(AB=O\), 这里 \(O\) 是 \(0\) 变换;
(2) \(A\) 的任意不变子空间也是 \(B\) 的不变子空间;
(3) \(A^5+A^4+A^3+A^2+A=O\).
证明 \(BA=O\).

5. 设 \(V\) 是全体次数不超过 \(n\) 的实系数多项式组成的线性空间, 定义线性变换 \(A\colon f(x)\rightarrow f(1-x)\). 求 \(A\) 的特征值和对应的特征子空间.

6. 计算如下的行列式,各行底数为等差数列,各列底数也为如此,所有指数都是 \(50\):

\[\left|\begin{array}{ccccc}
1^{50}&2^{50}&3^{50}&\cdots &100^{50}\\
2^{50}&3^{50}&4^{50}&\cdots &101^{50}\\
\vdots&\vdots&\vdots&\vdots&\vdots\\
100^{50}&101^{50}&102^{50}&\cdots& 199^{50}\\\end{array}\right|\]

7.设 \(V\) 是复数域上有限维线性空间 \(A\) 是 \(V\) 上线性变换, \(A\) 在一组基下矩阵为 \(F\).
(1) 若 \(A\) 可对角化对任意 \(A\) 的不变子空间 \(U\), 存在 \(U\) 的一个补空间 \(W\) 是 \(A\) 的不变子空间;
(2) 若对任意 \(A\) 的不变子空间 \(U\),存在 \(U\) 的一个补空间 \(W\) 是 \(A\) 的不变子空间,证明 \(F\) 可对角化.

8. 平面上一个可逆仿射变换将一个圆映为椭圆(或圆).详细论证这一点

9. 平面 \(Ax+By+Cz+D=0\) 与双曲抛物面 \(2z=x^2-y^2\) 交于两条直线
证明 \(A^2-B^2-2CD=0\).

10. 正十二面体有12个面, 每个面为正五边形, 每个顶点连接3条棱. 有一个半径为 \(r\) 的球与它的各个面都相切, 有一个半径为 \(R\) 的中心在原点的球通过它的所有顶点. 求 \(\dfrac rR\).

Dec 272015
 

北京时间 27 日上午举行的硕士研究生初试的数学分析

1. 用开覆盖定理证明闭区间上的连续函数必一致连续.

2.  \(f(x)\) 是 \([a,b]\) 上的实函数. 叙述关于 Riemann 和

\[\sum_{k=1}^n f(t_i)(x_i-x_{i-1})\]

的Cauchy准则(不用证明), 并用你叙述的Cauchy准则证明闭区间上的单调函数可积.

3. \((a,b)\) 上的连续函数 \(f(x)\) 有反函数.证明反函数连续

4. \(f(x_1,x_2,x_3)\)是 \(C^2\)映射,

\[\frac{\partial f}{\partial x_1}(x_1^0,x_2^0,x_3^0)\not =0\]

证明关于 \(f\) 的隐函数定理 \(x_1=x_1(x_2,x_3)\). 证明 \(x_1=x_1(x_2,x_3)\) 二次可微并求出 \(\frac{\partial^2 x_1}{\partial x_2\partial x_3}\) 的表达式.

5. \(n\ge m\), \(f\colon U\subseteq R^n\rightarrow R^m\) 是 \(C^1\) 映射, \(U\) 为开集且 \(f\) 的 Jacobi 矩阵秩处处为 \(m\). 证明 \(f\) 将 \(U\) 中的开集映为开集.

6. \(x_1=\sqrt{2}\), \(x_{n+1}=\sqrt{2+x_n}\), \(n=1\), \(2\), \(\dotsc\). 证明 \(\{x_n\}\) 收敛并求极限值.

7. 证明 \(\int_0^{+\infty}\frac{\sin x}x \mathrm dx\) 收敛, 并求值(写出计算过程)

8. (A)证明若 \([a,b]\)上的多项式序列 \(p_n(x)\)使得 \(\int_a^b p_n^2(x)dx=1\), \(\int_a^b p_m(x)p_n(x)dx=0\), \(m\ne n\), 并使得对于 \([a,b]\) 上的连续函数 \(f(x)\) 若 \(\int_a^b f(x)p_n(x)dx=0,\forall n\) 必有\(f\equiv 0\). (B)设 \(g(x)\) 在 \([a,b]\) 平方可积, \(g\) 关于 A 中 \(p_n\) 的展式系数为 \(g(x)\sim\int_a^b g(x)p_n(x)dx\)问 \(\int_a^b g^2(x)dx=\sum\limits_{n=1}^{+\infty}\left[\int_a^b g(x)p_n(x)dx\right]^2\)是否成立?

9. 正项级数 \(\sum\limits_{n=1}^{+\infty} a_n\) 收敛, \(\lim\limits_{n\to +\infty}b_n=0\). \(c_n=a_1b_n+a_2b_{n-1}+\dots +a_nb_1\). 证明 \(\{c_n\}\) 收敛并求 \(\lim\limits_{n\to +\infty}c_n\).

10. 幂级数 \(\sum\limits_{n=1}^{+\infty} a_nx^n\) 收敛半径为 \(R\), \(0\lt R\lt+\infty\). 证明 \(\sum\limits_{n=1}^{+\infty} a_nR^n\) 收敛的充要条件为 \(\sum\limits_{n=1}^{+\infty} a_nx^n\) 在 \([0,R)\)一致收敛.

Dec 282014
 

北京时间 28 日上午举行的硕士研究生初试的数学分析

1. 计算 \(\lim\limits_{x\to0^+}\dfrac{\int_0^x e^{-t^2}\,\mathrm dt-x} {\sin x-x}\).

2. 论证积分 \(\int_1^{+\infty}\left[\ln\left(1+\frac1x\right)-\sin{\frac1x}\right]\,\mathrm dx\) 的敛散性.

3. 函数 \(f(x,y)=\begin{cases}\left(1-\cos\frac{x^2}y\right)\sqrt{x^2+y^2}, &y\ne0;\\0, & y=0.\end{cases}\) \(f(x,y)\) 在 \((0,0)\) 是否可微? 说明理由.

4. 计算 \(\int_L e^x\left[\left(1-\cos y\right)\,\mathrm dx-\left(y-\sin y\right)\,\mathrm dy\right]\), 这里 \(L\) 是曲线 \(y=\sin x\) 从 \((0,0)\) 到 \((\pi,0)\).

5. 证明函数级数 \(\sum\limits_{n=0}^\infty\dfrac{\cos{nx}}{n^2+1}\) 在 \((0,2\pi)\) 一致收敛, 并且在 \((0,2\pi)\) 有连续导数.

6. \(x_0=1\), \(x_{n+1}=\dfrac{3+2x_n}{3+x_n}\), \(n\geq 0\). 证明序列 \(\{x_n\}\) 收敛并求其极限.

7. 函数 \(f\in C^2(\Bbb R^2)\), 且对于任意 \((x,y)\in \Bbb R^2\), \(\dfrac{\partial^2 f}{\partial x^2}(x,y)+\dfrac{\partial^2 f}{\partial y^2}(x,y)\gt0\). 证明: \(f\) 没有极大值点.

8. \(f\) 在 \([a,b]\) 连续, 在 \((a,b)\) 可导, 且 \(f(b)\gt f(a)\). \(c=\dfrac{f(b)-f(a)}{b-a}\). 证明: \(f\) 必具备下述两条性质中的一个:
(1) 任意 \(x\in[a,b]\), 有 \(f(x)-f(a)=c(x-a)\);
(2) 存在 \(\xi\in(a,b)\), 使得 \(f^\prime(\xi)\gt c\).

9. \(\mathbf F\colon\Bbb R^3\to\Bbb R^2\) 是 \(C^1\) 映射, \(\mathbf F(x_0)=y_0\), \(x_0\in\Bbb R^3\), \(y_0\in\Bbb R^2\), 且 \(\mathbf F\) 在 \(x_0\) 处的 Jacobi 矩阵 \(\mathbf{DF}(x_0)\) 的秩为 \(2\). 证明: 存在 \(\varepsilon\gt0\), 以及 \(C^1\) 映射 \(\gamma(t)\colon(-\varepsilon,\varepsilon)\to\Bbb R^3\), 使得 \(\gamma^\prime(0)\) 是非零向量, 且 \(\mathbf F(\gamma(t))=y_0\).

10. \(U\subseteq\Bbb R^n\) 为开集, \(f\colon U\to\Bbb R^n\) 是同坯映射, 且 \(f\) 在 \(U\) 上一致连续. 证明: \(U=\Bbb R^n\).

Jul 132014
 

第五届丘成桐大学生数学竞赛笔试已于 2014 年 7 月 12 日至 13 日举行. 竞赛组委会组织专家集中阅卷后, 评选出参加决赛(面试)的团队和个人名单. 第五届丘成桐大学生数学竞赛决赛(口试)将于 2014 年 8 月 2 日和 3 日在北京举行.

分析与方程

1. Let  \(f \colon\Bbb R\to \Bbb R\) be continuous function which s.t.

\[\sup_{x, y\in \Bbb R} |f(x+y)-f(x)-f(y)|<\infty\]

if we have \(\lim_{n\to \infty}\frac{f(n)}n=2014\), Prove \(\sup_{x\in \Bbb R}|f(x)-2014x|<\infty\).

2. Let \(f_1\), \(f_2\), \(\dotsc\) , \(f_n\in\) \(H(D)\bigcap C(\bar{D})\) , where \(D=\{z: |z|<1\}\). Prove

\[\phi(z)=|f_1(z)|+|f_2(z)|+\dotsb+|f_n(z)|\]

achieve maximum value on \(\partial D\).

3. Prove that if there is conformal mapping betwwen the annulus \(\{z:r_{1}<|z|<r_{2}\}\) and the annulus \(\{z:\rho_1<|z|<\rho_{2}\}\)

then

\[\frac{r_{2}}{r_{1}}=\frac{\rho_{2}}{\rho_{1}}\]

4. 设\(U(\xi)\) 是 \(\Bbb R\) 是有界函数且有有限多个不连续点, 证明

\[P_U(x)=\frac1\pi\int_{\Bbb R}\frac y{(x-\xi)^2+y^2}U(\xi)\,\mathrm d\xi\]

是调和的(Harmonic function)在半平面 \(\{z \in \Bbb C\colon\Im z >0\}\), 若 \(\xi\) 为 \(U\) 连续点

\[P_{U}(x)\to U(\xi), z \to \xi\]

5. 海森堡不等式

\[\int_{-\infty}^{+\infty}x^2|f(x)|^2\,\mathrm dx\int_{-\infty}^{+\infty}\xi ^2|\hat{f}(\xi)|^2 \,\mathrm d\xi \geq \frac{(\int_{-\infty}^{+\infty}|f(x)|^2\,\mathrm dx)^2}{16\pi^2}\]

几何与拓扑

1.  Let  \(X\) be the quotient space of \(S^2\) under the identifications \(x \sim -x\) for \(x\)  in the equator \(S^{1}\). Cmpute the homology groups \(H_{n}(X)\). Do the same for \(S^{3}\) with antipodal points of the equator \(S^{2} \subset S^{3}\) identified.

2.  Let \(M \to \Bbb R^3\)  be a graph defined by \(z=f(u,v)\) where \(\{u,v,z\}\) is a Descartes coordinate system in \(\Bbb R^3\). Suppose that \(M\) is a minimal surface.

Prove that:

(a) The Guass curvature \(K\) of \(M\) can be expressed as

\[K=\Delta \log (1+\frac1W),W:=\sqrt{1+(\frac{\partial f}{\partial u})^{2}+(\frac{\partial f}{\partial v})^{2}}\]

(b) If \(f\) is defined on the whole \(uv\)-plane, then \(f\) is a linear function. (Bernstein theorem)

3.  Let \(M=\Bbb R^2 / \Bbb Z^2\) be the two dimensional torus, \(L\) the line \(3x=7y\) in \(\Bbb R^2\), and \(S=\pi (L) \subset M\) where \(\pi :\Bbb R^2 \to M\) is the projection map. Find a differential form on \(M\) which represents the Poincare dual of \(S\).

4. Let \((\tilde M,\tilde g) \to (M,g)\) be a Riemannian submersion. This is a submersion \(p: M \to M\) such that for each \(x\in \tilde{M}, \ker^{\bot}(Dp) \to T_{p(x)}(M)\)  is a Linear isometry.

(a) Show that p shortens distance.
(b) If \((\tilde{M},\tilde{g})\) is complete, so is \((M,g)\).
(c) Show by example that if \((M,g)\) is complete, \((\tilde{M},\tilde{g})\) may not be complete.

5. Let \(\psi :M \to \Bbb R^3\) be an isometric immersion of a compact surface \(M\) into \(\Bbb R^3\).

Prove that

\[\int_MH^2 \,\mathrm d\sigma \geq 4\pi\]

where \(H\) is the mean curvature of \(M\) and \(d\sigma\) is the area element of \(M\).

6. The unit tangent bundle of \(S^2\) is the subset

\[T^1(S^2)=\{(p,v)\in \Bbb R^2\, | \, \|p\|=1, (p,v)=0,\|v\|=1\}\]

Show that it is a smooth submanifold of the tangent bundle \(T(S^2)\) of  \(S^2\) and \(T^1(S^2)\) is diffeomorphic to \(\Bbb RP^3\).

感谢博士数学论坛的网友 zwb565055403 提供的两套试题, 网友数函分享的 PDF 试题

个人赛试题

Analysis and differential equations Individual 2014

Geometry and topology Individual 2014

Algebra and number theory Individual 2014

Probability and statistics Individual 2014

Applied Math. and Computational Math. Individual 2014

团体赛

team 2014

Mar 292014
 

第五届全国大学生数学竞赛决赛试题和官方解答. 数学专业决赛从本届开始将分为“一二年级组”和“三四年级组”.

2014 the 5th China Undergraduate Mathematical Competition final(freshman and sophomore)

2014 the 5th China Undergraduate Mathematical Competition final(junior and senior)

2014 the 5th China Undergraduate Mathematical Competition final solutions(freshman and sophomore)

2014 the 5th China Undergraduate Mathematical Competition final solutions(junior and senior)

 Posted by at 12:22 pm
Jan 172014
 

1.  办法之一是下面的

引理 设 \(g(x)=x^n+a_{n-1}x^{n-1}+\dotsb+a_1x+a_0\) 是实系数多项式, 则在任意互不相同的 \(n+1\) 个整数 \(b_1\), \(b_2\), \(\dotsc\), \(b_{n+1}\) 中, 必定存在一个 \(b_j(1\leqslant j\leqslant n+1)\), 使得 \(|P(b_j)|\geqslant\dfrac{n!}{2^n}\).

第二个考虑是, 设存在非常数整系数多项式 \(u(x)\), \(v(x)\) 使得

\[f(x)=u(x)v(x).\]

因为 \(f(x)\) 恒正, 可以假定 \(u(x)\), \(v(x)\) 亦然. 于是,  \(u(x)\), \(v(x)\) 的次数都是偶数.

显然,

\[u(k)v(k)=2014, k=1,2,\dotsc, 2013.\]

先指出: \(u(k)=u(k+1003)=u(k+1004)\), \(v(k)=v(k+1003)=v(k+1004)\), \(k=1\), \(2\), \(\dotsc\), \(1009\).

这是因为 \(u(k)\), \(u(k+1003)\), \( u(k+1004)\) 都是 \(2014\) 的因数, 并且

\[1003|\big(u(k+1003)-u(k)\big),    1004|\big(u(k+1004)-u(k)\big).\]

另一方面, \(2014\) 的正因数只有 \(1\),\(2\), \(19\), \(38\), \(53\), \(106\), \(1007\), \(2014\). 因此, 如果 \(2014\) 的两个正因数的差是 \(1003\) 或 \(1004\) 的倍数, 那么这两个因数只能相等.

现在我们可以断定

\[u(1)=u(2)=\dotsb=u(2013), v(1)=v(2)=\dotsb=v(2013).\]

只需指出 \[u(k)=u(k+1), k=1,2,\dotsc, 2012.\]

事实上, 当 \(k\leq 1009\)  时, \(u(k)=u(k+1004)=u(k+1)\); 当 \(1010\leq k\leq 2012\) 时, \(u(k)=u(k-1003)=u(k+1)\).

如此一来, \(u(x)\), \(v(x)\) 都是 \(2013\) 次多项式. 这是不允许的!

也可以稍微换个做法. 此时, 可设 \(u(x)=\prod\limits_{i=1}^{2013} (x-i)+d_1\), \(v(x)=\prod\limits_{i=1}^{2013} (x-i)+d_2\), 很容易得出矛盾.

2. 这是 1990 年的普特南竞赛题.

如果 \(M\), \(N\) 都是二阶矩阵, 结论是正确的.

\(n\geq3\) 都有反例.

\[M=\begin{pmatrix} 0 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1\end{pmatrix},\; N=\begin{pmatrix} 0 & 1 & 0 \cr 0 & 0 & 1 \cr 0 & 0 & 0\end{pmatrix},\]

\(MNMN=0\),但是 \(NMNM=\begin{pmatrix} 0 & 0 & 1 \cr 0 & 0 & 0 \cr 0 & 0 & 0\end{pmatrix}\).

Jan 082014
 

李氏朝鲜的第四代君主是最伟大的世宗大王. 他把王位按照嫡长子继承的原则, 传给了嫡长子文宗!  然而, 文宗体弱多病, 临终前, 任命金宗瑞为顾命大臣, 辅佐 12 岁即位的端宗.

端宗的叔父首阳大君, 谋害了金宗瑞, 成了领仪政, 掌握大权. 随后, 逼迫端宗禅让王位. 端宗做了两年上王之后, 被赐药而死.

首阳大君, 也就是世祖, 有必要杀侄儿吗? 历史上, 有哪些退位的太上皇被杀? 能找出几个?

如果不是端宗太年轻被害, 也许我不会这么同情他!  叔父首阳大君做的太过! 首阳篡位之前, 有很多次, 可能被杀!

端宗绝对不应该禅让王位的! 再怎么没有实权, 端宗是君, 首阳是臣. 除非暗杀, 否则首阳没有办法. 一旦成了别人的臣, 命完全由不得自己了.

端宗共计在位三年, 在上王位二年, 终年十七岁. 无嗣, 葬于江原道宁越郡庄陵. 这也是朝鲜王朝五百年间, 唯一一座不在京畿的王陵(追封的各王不算).

直至朝鲜肃宗七年(1681 年), 鲁山君被追封为鲁山大君, 肃宗二十四年被追尊复位, 上庙号端宗, 谥号为纯定安庄景顺敦孝大王, 陵号为庄陵. 鲁山君夫人宋氏被追封为定顺王后, 徽号为端良齐敬, 陵号为思陵. 端宗与定顺王后的神主移入宗庙永宁殿, 并举行了袝庙之礼. 与此同时”鲁山君日记”升格为”端宗实录”, 并在庄陵附近修建“死六臣祠”, 为其举行国家级别的祭祀.

挑选几个题作答, 主要是第 10 题.

If \( f\in C^1([a,b])\) is increasing and nonconstant, then

\[\int_a^b\sqrt{1+{f^\prime}^2(x)}\, \mathrm dx \lt b-a+f(b)-f(a). \]

For \(\alpha\), \(\beta\geqslant0\), \(\sqrt{\alpha^2+\beta^2}\leqslant\alpha+\beta\), with equality iff one or both of \(\alpha\), \(\beta\) equals \(0\).

Now \(f ^\prime\geqslant 0\), it follows that

\[\sqrt{1+{f^\prime}^2(x)}\leqslant 1+f^\prime(x), x\in [a,b].\]

Because \(f(x)\) is nonconstant, \(f^\prime\gt0\) in a subinterval. In that subinterval we have strict inequality between these two functions. Integrating both sides then gives the result.