Jul 042020
 

​6月17日,人教版数学八年级下册自读课本写到爱因斯坦用相对论中的质能方程论证勾股定理,但是摆了乌龙的消息刷屏。这里不去讨论这个错误的证明,虽然在官方教科书出现这种低级错误实在不该。

下面的两个图来自这本书 Manfred Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, 3-4

简言之,爱因斯坦利用了欧氏几何中相似三角形的两条性质:

  1. ​ 相似三角形的面积之比等于相似比的平方;
  2.  相似三角形的面积与某条对应边边长平方之比为一个常数。

将最初的直角三角形作斜边上的高,分成两个小直角三角形,三个直角三角形是两两相似的,并且各自的面积分别除以自己斜边边长的平方,三者的商相等,以 m 表之。将原来的直角三角形的三边长分别记为 \(a, b, c\),  于是三个直角三角形的斜边长分别 \(c, a\) 和 \(b\)。至此,便有等式

\[mc^2=ma^2+mb^2.\]

最后,两端约去非零的系数 \(m\) ,便出来了我们熟悉的勾股定理。

采用相似来证明勾股定理的途径有很多,但是爱因斯坦的这个方法以优雅和简洁而出类拔萃,这个论证揭示了长度和面积的联系是勾股定理的核心!爱因斯坦本人并没有记载这个他的证明。现在看到的证明是,可能是他的朋友后来记下的.

据爱因斯坦的自传,他在12岁阅读一本欧氏平面几何的小书,经过一番努力发现了勾股定理的新证明,这是一种完全不同的体验正如希腊人揭示的man is capable at all to reach such a degree of certainty and purity in pure thinking.

Jul 192019
 

2019 第 60 届 IMO 解答

Problem 1 ()

很稀松平常的方程. 令 \(a=0\), 于是

\[f(0) + 2f(b) = f(f(b)).\]

因此, 我们只要考察

\[f(2a) + 2f(b) = f(0) + 2f(a+b) \]

就成.

令 \(a=1\), 我们有

\[f(2) + 2f(b) = f(0) + 2f(1+b). \]

这也就是 \(f(b+1) – f(b) =\frac{f(2)-f(0)}2\). 从而, \(f(n)\) 是线性的. 设 \(f(n)=An+B\)(\(A\), \(B\) 是待定的常数). 结合 \(f(0) + 2f(n) = f(f(n))\) 可知

\[B+2(An+B)=A(An+B)+B.\]

于是 \(2A=A^2\), \(3B=AB+B\). 故而, \((A,B)=(0,0)\), \((2, k)\), 这里 \(k\) 是任意的整数.

经检验, \(f(n)=0\) 与 \(f(n)=2n+k\) 符合要求(\(k\) 是任意的整数常数).

综上所述, 所求的函数即是 \(f(n)=0\) 与 \(f(n)=2n+k\) (\(k\) 是任意的整数常数).

Problem 2 ()

 Posted by at 2:46 pm  Tagged with:
May 202018
 

2018 年IMO 国家队队员李一笑——来自江苏天一中学——的大作 “2018 年国家集训队第一阶段选拔试题及解答”. 文档转载自数学新星网.

2018 China IMO team selection test part one

2018 年国家集训队第二阶段选拔试题来自贴吧

2018 China IMO team selection test

2018 China IMO team selection test part two 1

2018 China IMO team selection test

2018 China IMO team selection test part two 2

2018 China IMO team selection test

2018 China IMO team selection test part two 3

2018 China IMO team selection test

2018 China IMO team selection test part two 4

 Posted by at 8:41 am
Nov 162017
 

不是完整的试题解答, 仅仅在关隘的地点聊一聊.

付云皓的题 3 的解

记 \(a=[nq^{\frac13}]\), \(b=[nq^{\frac23}]\), \(c=nq\). 然后

\begin{equation}\Big(c-aq^{\frac23}\Big)^2+\Big(c-bq^{\frac13}\Big)^2+\Big(aq^{\frac23}-bq^{\frac13}\Big)^2=\frac{2(a^3q^2+b^3q+c^3-3abcq)}{aq^{\frac23}+bq^{\frac13}+c}\geqslant\frac2{3c},\end{equation}

最后的不等式是因为 \(a^3q^2+b^3q+c^3\gt 3abcq\), 并且 \(c\geqslant aq^{\frac23}\), \(c\geqslant bq^{\frac13}\).

然后, 因为 \(c-aq^{\frac23}\geqslant0\), \(c- bq^{\frac13}\geqslant0\), 以及 \(aq^{\frac23}-bq^{\frac13}=-\Big((c-aq^{\frac23})-(c-bq^{\frac13})\Big)\), 得到

\begin{equation}\Big(c-aq^{\frac23}\Big)^2+\Big(c-bq^{\frac13}\Big)^2\leqslant\Big(2c-aq^{\frac23}-bq^{\frac13}\Big)^2,\end{equation}

\begin{equation}\Big(aq^{\frac23}-bq^{\frac13}\Big)^2\leqslant\Big(2c-aq^{\frac23}-bq^{\frac13}\Big)^2.\end{equation}

现在, \((1)\) 给出

\begin{equation}2\Big(2c-aq^{\frac23}-bq^{\frac13}\Big)^2\geqslant\frac2{3c},\end{equation}

记得 \(c=nq\), 这也就是

\begin{equation}\Big(q^{\frac13}\cdot \{nq^{\frac23}\}+q^{\frac23}\cdot \{nq^{\frac13}\}\Big)^2\geqslant\frac1{3nq}.\end{equation}

随即我们有

\begin{equation}\Big\{nq^{\frac23}\Big\}+ \Big\{nq^{\frac13}\Big\}\geqslant\frac1{q\sqrt{3qn}}.\end{equation}

然后是邓煜给出的第三题的答案, 从知乎转来.

 Posted by at 8:39 pm  Tagged with:
Nov 162017
 

第 33 届中国数学奥林匹克

浙江 杭州

第一天

(2017 年 11 月 15 日    8:00–12:30)

1. 设 \(A_n\) 是满足以下条件的素数 \(p\) 的集合: \(\exists a\), \(b\in\Bbb N^+\), 使得 \(\dfrac{a+b}p\), \(\dfrac{a^2+b^2}{p^2}\) 都是正整数, 且

\[\Big(\frac{a+b}p, p\Big)=\Big(\frac{a^2+b^2}{p^2}, p\Big)=1.\]

证明: (1) \(A_n\) 为有限集当且仅当 \(n\ne2\);

(2) 记 \(f(n)=|A_n|\). 若 \(k\), \(m\) 为正奇数, \(d=(k, m)\), 则

\[f(d)\leqslant  f(k)+f(m)-f(km)\leqslant 2f(d).\]

2. 设

\[T=\{(x, y, z)|1\leqslant x, y, z\leqslant n\}\]

为空间中 \(n^3\) 个点. 将其中 \((3n^2-3n+1)+k\) 个点染为红色, 且若 \(P\), \(Q\) 为红色, \(PQ\) 平行于任一条坐标轴, 则线段 \(PQ\) 上的所有整点均为红色. 求证: 至少有 \(k\) 个边长为 \(1\) 的立方体的所有顶点均为红色.

3. 设 \(n\), \(q\) 为正整数, \(q\) 不是完全立方数. 求证: 存在正实数 \(c\) 满足
\[\{nq^{\frac13}\}+\{nq^{\frac23}\}\geqslant \frac c{\sqrt n}\]

对所有正整数 \(n\) 成立, 其中 \(\{\cdot\}\) 表示其小数部分.

第 33 届中国数学奥林匹克

浙江 杭州

第二天

(2017 年 11 月 16 日    8:00–12:30)

4. 已知圆内接四边形 \(ABCD\), 其对角线 \(AC\) 与 \(BD\) 交于 \(P\) 点, \(\triangle ADP\) 的外接圆交 \(AB\) 于 \(E\), \(\triangle BCP\) 的外接圆交 \(AB\) 于 \(F\). \(\triangle ADE\) 与 \(\triangle BCF\) 的内心分别为 \(I\), \(J\), 直线 \(IJ\) 交 \(AC\) 于 \(K\).
求证: \(A\), \(I\), \(K\) , \(E\) 四点共圆.

cmo 2017

cmo 2017 p4

5. 对 \(n\times n\) 的方格进行黑白染色, 若两个方格 \(a\), \(b\) 有公共顶点且同色, 则称 \(a\), \(b\) 这两个方格相邻. 若 \(a\), \(b\) 能通过一系列的方格 \(c_1\to c_2\to\dotsb\to c_k\), 其中 \(c_1=a\), \(c_2=b\), 且 \(c_i\), \(c_{i+1}\) 相邻, 则称 \(a\), \(b\) 连通. 求最大正整数 \(M\), 使得存在 \(M\) 个方格, 使得其两两不连通.

6. 给定正整数 \(n\), \(k\), \(n\gt k\), 其中 \(a_i\in (k-1, k)\), \(1\leqslant i\leqslant n\). 若正实数 \(x_1\), \(x_2\), \(\dotsc\),\(x_n\) 满足: 对任意集合 \(I\subset\{1,2,\dotsc,n\}\), \(|I|=k\) 有\(\sum\limits_{i\in I}x_i\leqslant \sum\limits_{i\in I}a_i\), 试求 \(\prod\limits_{i=1}^nx_i\) 的最大值.

 Posted by at 8:05 pm  Tagged with: