Jan 142014
 

数学一入深似海, 从此红尘是路人

华罗庚

数论导引
堆垒素数论
指数和的估计及其在数论中的应用

闵嗣鹤

数论的方法

潘承洞 潘承彪

哥德巴赫猜想
模形式导引
解析数论基础
代数数论
素数定理的初等证明
初等数论 第三版

陆洪文

二次数域的高斯猜想
模形式讲义

黎景辉 赵春来 蓝以中

模曲线导引 第二版 黎景辉 赵春来
二阶矩阵群的表示与自守形式 黎景辉 蓝以中

叶扬波

模形式与迹公式

李文卿

数论及其应用

裴定一

模形式和三元二次型
算法数论

冯克勤

分圆函数域
非同余数和秩零椭圆曲线
代数数论
平方和
代数数论简史

柯召 孙琦

谈谈不定方程
初等数论 100 例

单墫 余红兵 冯志刚 刘培杰

趣味数论 单墫
谈谈不定方程 单墫, 余红兵
初等数论 冯志刚
数论(原名”数学竞赛中的数论问题”) 余红兵
初等数论难题集 刘培杰

Jan 022014
 

很偶然的, 看到了几个韩京俊传出来的数论问题. 据说问题来自牟晓生.

  1. 设 \(p\) 为大于 \(3\) 的素数, 证明 \(\dfrac{p^p-1}{p-1}\) 和 \(\dfrac{p^p+1}{p+1}\) 不能都是素数幂;
  2. 设 \(n\gt5\), 证明 \(n!\) 不能整除它的正约数之和;
  3. 设 \(A\), \(B\) 划分正整数集, 如果\(A+A\) 和 \(B+B\) 都只含有有限个素数, 证明\(A\) 或 \(B\) 是全体奇数的集合;
  4. 设 \(M\) 是给定正整数, 证明对每个充分大的素数 \(p\), 存在\(M\)个连续的 \(\bmod p\) 的二次非剩余;
  5. 设 \(q\) 是一个不大于\(\dfrac{\pi^2}6 -1\) 的正有理数, 证明 \(q\) 可写为若干互异单位分数的平方和;
  6. 对每个充分大的正整数 \(k\), 存在若干互异正整数, 其和为 \(k\), 其倒数和为 \(1\);
  7. 在 \(n^2\) 和 \((n+1)^2\) 间总有一些正整数的积是一个平方数的两倍;
  8. 若一些单位根之和在单位圆上, 则必亦为单位根;
  9. 设 \(f(x)=a_0+a_1x+a_2x^2+\dotsb\) 是一个整系数的形式幂级数, 假定 \(\dfrac{f^\prime(x)}{f(x)}\) 也是一个整系数的形式幂级数, 证明对任意下标 \(k\), \(a_k\) 能被 \(a_0\) 整除.

这些问题显然非常的有难度. 第 3 个问题, 俺多年前就见过, 是 Paul Erdős 在美国数学月刊上提的问题(编号 A6431).

俺特意调查了其他几个问题的出处.

问题 5 也是 Paul Erdős 提出的, 但证明是 R.L. Graham (也可能是 Sierpsinski) 给的. R.L. Graham 证明了

\(\dfrac pq\) can expressed as the finite sum of reciprocals of distinct squares if and only if

\[\frac pq\in[0, \frac{\pi^2}6-1)\cup[1,\frac{\pi^2}6).\]

问题 6 的答案也是 R. L. Graham 提供的: Graham published a proof  in 1963 as “A Theorem on Partitions”, Journal of the Australian Mathematical Society 3 (1963), pp. 435-441.

If  \(n\) is an integer exceeding \(77\) then there exist positive integers \(k\), \(a_1\), \(a_2\), \(\dotsc\), \(a_k\) such that:

  1. \(1\lt a_1\lt a_2\lt \dotsc \lt a_k;\)
  2.  \(a_1+ a_2+ \dotsb + a_k=n;\)
  3.  \(\frac1{a_1}+ \frac1{a_2}+ \dotsb + \frac1{a_k}=1.\)

His proof is constructive and fairly short, but it does require a long table of decompositions for relatively small values of \(n\). It would be interesting to see a non-constructive proof that doesn’t require such a long list.

问题 7 也不简单.

Granville and Selfridge, Product of integers in an interval, modulo squares: “We prove a conjecture of Irving Kaplansky which asserts that between any pair of consecutive positive squares there is a set of distinct integers whose product is twice a square.”

The details are Electronic Journal of Combinatorics, Volume 8(1), 2001.

有比问题 8 更普遍的结果. More precisely, let \(\zeta_1\), \(\dotsc\), \(\zeta_k\) be \(n\)-th roots of unity. If

\[|\sum_{i=1}^k n_i\zeta_i|= 1,\]

where \(n_i\in\mathbb Z\), then \(\sum\limits_{i=1}^k n_i \zeta_i\) is also an \(n\)-th root of unit.

Sep 032013
 

\[(x^2+xy+y^2)(z^2+zw+w^2)=(xz-yw)^2+(xz-yw)[wx+y(z+w)]+[wx+y(z+w)]^2\]

因此, 形如 \(x^2+xy+y^2\) 的数相乘, 所得的积仍为同样的形式.

这恒等式是如何想出来的? 秘密在于行列式, 把 \(x^2+xy+y^2\) 看成行列式

\begin{vmatrix}
x& y\cr
-y & x+y
\end{vmatrix}

Let \(f(x_1,x_2,\dotsc,x_n)\) be a homogeneous polynomial. Let

\[S=\{f(a_1,a_2,\dotsc,a_n)\mid a_1,a_2,\dotsc,a_n \in\Bbb Z\}.\]

If \(S\) satisfies the following condition: for all \(m,n\in S\), we have \(mn\in S\). Can we determine all the homogeneous polynomials \(f\)?

For example, \(x^n(n\in\Bbb N),x^2+n y^2(n\in\Bbb Z), x^2+xy+y^2,x^3+y^3+z^3-3xyz\), and \(x^2+y^2+z^2+w^2\) are all appropriate examples.

 Posted by at 10:09 am
Aug 192013
 

Richard Taylor(就是协助 Andrew Wiles 完成了Fermat’s Last Theorem 的证明的那位) 写了一篇很有趣的文章 Modular Arithmetic: Driven by Inherent Beauty and Human Curiosity(The Institute Letter, 2012, Summer, 6-8). 这文章指出: Euclid 在他的几何原本 已经得到方程

\begin{equation}x^2+y^2=z^2\end{equation}

的全部整数解. Taylor 进一步指出, 只要

\begin{equation}x^2+y^2=2z^2\end{equation}

有一个非零整数解, 那么 Euclid 的办法依然有效, 可以用来找出  \(x^2+y^2=2z^2\) 的全部解, 并且 Taylor 也写出了全部的解. 然后, 对于  \(x^2+y^2=3z^2\), 很遗憾, 没有非平凡的解.

对方程

\begin{equation}x^2+y^2=nz^2,\end{equation}

Taylor 就说了这么多. 那么, 我们来尝试找出这方程的所有有理解, 以及所有整数解.

根据 Fermat 的平方和定理, 方程 (3) 有(有理解, 整数解)解, 当且仅当 \(n\) 能表成两个整数的平方和 \(n=a^2+b^2\). 因此, 我们考察下面的方程就行了:

\begin{equation}x^2+y^2=(a^2+b^2)z^2,\end{equation}

这里 \(a,b\in\Bbb Z\).

Jul 112013
 

不存在无穷质数等差数列. 下面是几种证明:

设等差数列的首项为 \(a\), 公差为 \(d\).

证明 1

分两种情况:

  • a=1. 此时 \(1+(d+2)d=(d+1)^2\) 是合数;
  • \(a\geqslant2\). 此时 \(a+ad=a(d+1)\) 是合数.

证明 2

连续合数可以任意长, 这是熟知的. 不曾想,  一个副产品居然就是我们的目标.

\((m+1)!+2,(m+1)!+3,\dotsc,(m+1)!+m+1\) 是 \(m\) 个连续合数.

证明 3

稍强一点的结果 采用完全剩余系

取一个与公差 \(d\) 互质的正整数 \(m\),

\[a, a+d, a+2d, \dotsc, a+(m-1)d\]

将跑遍 \(\bmod  m\) 的完全剩余系, 于是必有一项 \(\equiv0\pmod m\).

证明 4

这个结论也是熟知的: 不存在多项式

\[f(x)=\sum\limits_{i=0}^ma_ix^i,\]

使得对于任意 \(n∈\Bbb N, f(n)\) 都是质数.

证明 5

这个高级一点点: 采用自然密率 (natural density 或 asymptotic density), 而不是更常见的 Schnirelmann 密率 (Schnirelmann density).

由质数组成的集合的 asymptotic density 是 \(0\), 而等差数列形成的集合的 asymptotic density 为正.

证明 6

使用中国剩余定理证明”连续合数可以任意长”的加强版. 这个证明来自 matrix67 在2015年5月30日的日志, 但这里一些改进.

任取 \(n\) 个两两互质的正整数 \(m_1\), \(m_2\), \(\dotsc\), \(m_n\). 存在正整数 \(a\), 使得

\[m_i|\left(a+i\right),  i=1, 2, \dotsc, n.\]

[证明 6 更新于 北京时间 2015 年 6 月 24 日]

Jul 052013
 

单墫的数论书 “趣味数论” 是一本不错的数论入门书. 这是我看过的第一本完全的数论书籍.

阅读本书不需要多少准备知识, 初中毕业生基本没有什么困难. 当然, 一个爱思考的大脑, 对数学的热爱, 一支铅笔一张纸肯定是不能缺少的!

对数学竞赛来说, 需要的数论知识点, 这书都有, 除了不是必须的二次剩余. 这书有不少堆垒数论的问题. 除此之外, 第七章是丢番图逼近的简单介绍, 第九章, 第十章可以看作解析数论, 代数数论的最简单入门. 这些数论分支, 继续深入, 都有很多好的文献.

单墫的的书, 有一些共同的特征: 问题多, 定理少! 这在本书也得到完整的体现.

本书最早由中国青年出版社出版, 是绿色封皮. 最新的第二版, 是华东师大出版社推出. 新版, 相较前版, 仅仅只有最后一节, 修订交待了 Wiles 证明了Fermat 大定理.

下面是对本书的一些补充材料:

1.21 唯一因式分解定理的证明

本书给出的是最流行的办法.  Hardy 的名作 [2] 用最小数原理给出了另外一个证明.

2.5  五边形与五角数

一般, 第 \(k\) 个 \(m+2(m\geqslant1)\) 角数记为
\[p_m(k)=\dfrac{mk(k-1)}2+k.\]

2.8  一个不平凡的结论

这个结论是 Euler 的.  可在 [3] 的最后一章找到一个证明.

2.9 什么数恰好有 \(60\) 个因数?

最后给出的答案, 遗漏了一种情况: \(p^{59}\).

\(kn = x^2+y^2+1\)

\(n\) is a odd number, then there exists positive integer \(k\gt0\) such that \(kn = x^2+y^2+1\) for some integers \(x,y\).

with use of the Chinese remainder theorem we have to solve this problem only for power of primes:

suppose that \( n=p_1^{a_1}p_2^{a_2}\dotsm p_k^{a_k}\), then we know that for each \(i\), there exist \( x_i, y_i\) such that \( p_i^{a_i}\) divides  \( x_i^2+y_i^2+1\). Now consider these equations:

\[ X\equiv x_i\pmod {p_i^{a_i}}, i= 1,2,\dotsc,k.\]

these equations have solution because of  Chinese remainder theorem.

similarly these equation have solution:

\[  Y\equiv y_i\pmod {p_i^{a_i}}, i= 1,2,\dotsc,k.\]

now \(n\) divides  \( X^2+Y^2+1.\)

then we can apply hansel’s lemma. Actually we want to show that if for some \( \alpha \), there exist \(x,y\) such that \( p^\alpha\) divides  \( x^2+y^2+1\), then for  \( \alpha +1\) such \(x\)  and \(y\) exist. For this because in case \( \alpha \), \( p\) cannot divide both \(x\)  and \(y\), then we can use hansel for improve \( \alpha \) to \( \alpha+1.\)

References

  1. 华罗庚, 数论导引.
  2. Hardy, An introducton to the theory of numbers. 有中文本
  3. Tom M. Apostol, Introduction to analytic number therory. 有中文本
Oct 032012
 

Number theory will be understood, not as a collection of tricks and isolated results, but as a coherent and interconnected theory.

算术基本定理最早的准确表述与证明, 应该是出自 Gauss 的名著算术研究. 但是, 在这之前很久, 人们似乎就已经知道这个定理的具体内容, 并且已经广泛使用.

很明显, 这个结果是重要的! \(\sqrt2\) 是无理数的经典证法也依仗它! 当然, 定理也是漂亮的!

Green(与 Tao 合作 Green–Tao theorem 的那位)的(博士)导师 Gowers, 写了两篇关于此定理的文章: Why isn’t the fundamental theorem of arithmetic obvious?  和 Proving the fundamental theorem of arithmetic.

定理不是显然的. 流行的证明, 大家都知道, 是利用 Bézout 恒等式还有归纳法. 罕见的一个证明来自英国大数学家 Hardy 的数论导引, 如今名为哈代数论, 的第二章的最后: 利用最小数原理.

陈省身说, 好的数学就是可以引导出很多后来发展的数学! 所以, 题外话是: 竞赛数学不是好的数学!

对于算术基本定理来说, 很遗憾, 在一般的数域中, 在更广泛的范围, 并不成立. 20世纪最伟大的数学家 Hilbert 曾经举个一个例子: 唯一分解在

\[H=\{1,5,9,13,17,\dotsc\}\]

中不成立. 众所周知的一个事情是: 如果唯一分解总是成立的的话, 著名的 Fermat 大定理就太 easy 了.

算术基本定理诱导了如唯一分解整环, Euclid 整环等等概念. Gauss 为了描述唯一分解成立的程度, 引进了类数的概念. 大致上, 类数越大, 一个数被分解成质数的分法个数就越多. 虚二次域 \(Q( \sqrt D)\) 的 Gauss 猜想已经解决, 但实二次域的情形, 现在还是木有证明的事情.

关于理想 ideal, 倒是有一个相应的唯一分解定理: \(O_k\) 的任意非零真理想可以唯一写成质理想的积, 不考虑顺序的话.

 Posted by at 11:44 am
Aug 232012
 

间接或者直接使用中国剩余定理(the Chinese remainder theorem)可以证明二次互反律. 间接使用, 意思是互反律的证明使用了某个定理, 但是这个定理的关键却在 CRT; 直接使用容易理解. Sey Y.Kim 在 The American Mathematical Monthly, Vol.111, Jan., \(2004\),\(48\)-\(50\) 有一个比较简洁的初等证明, 使用了 Euler的判别条件(Euler’s criterion)和由中国剩余定理导出的同余方程的一个结论, 可算间接证明的代表; 而 G.Rousseau, Tim Kunisty, Klaus Hoechsmann 的证明, 都是直接使用了 CRT 的一个特例, 即群论中的一个同构 \(\Bbb Z_{pq}^*\cong\Bbb Z_p^*\times\Bbb Z_q^*\).

Sey Y.Kim 的证明也收录在 Biscuits of Number Theory 一书.