Sep 182016
 

本文作者 Zilin Jiang

对于一个三角形 \(T\), 一定可以找到一个椭圆 \( E\), 满足 \(E\subseteq T\subseteq 2E\). 对于一个平行四边形\(P\), 一定可以找到一个椭圆\( E^*\), 满足 \( E^*\subseteq P\subseteq \sqrt{2}E^*\).

由于在仿射变换下三角形, 平行四边形, 椭圆, 线段比例都保持, 所以只需要对正三角形和正方形进行证明就可以了.

实际上, John定理断言, 每一个\( n\) 维凸体\( K\) 都有一个相应的椭球 \(E\) 满足, \(E\subseteq K\subseteq nE\). 对每一个中心对称凸体 \( C\), 都有一个相应的椭球 \( E^*\) 满足 \( E^*\subseteq C\subseteq \sqrt{n}E^*\).

为了证明John定理, 我们需要引入 John 椭球的概念, 为此需要证明 John-Loewner 椭球定理: 对于任意一个 \( n\) 维空间中的含有内点的紧子集, 存在唯一的椭球包含\(K\), 使得椭球体积达到最小, 此时, 称该椭球为 John 椭球.

证明(概要) 利用椭球与\( n\) 阶正定对称阵的联系, 考虑所有包含 \(K\) 的椭球的中心和其对应的正定对称阵构成空间\( C_K\), 证明\( \det\) 函数在\(C_K\) 上取到最大值, 存在性得证. 如果 \(\det\) 在 \( C_K\) 中有两个极大值点, 可以通过这两个极大值点构造 \( C_K\) 中的元素, 使得\(\det\) 在该元素上的取值更大(这里需要利用\(\ln \det\) 在 \( C_K\) 上的凹性), 由此导出矛盾, 唯一性得证.

作为应用, 我们考虑所有的\( GL_n(\Bbb R)\)的紧子群\(G\), 令

\[K=\cup_{g\in G} g(B^n),\]

其中\( B^n\) 是单位球, 此时\(K\) 含有内点. 于是\(K\) 是在任意\( G\) 中元素作用下稳定, 如果\( E\) 是 \(K\)的John椭球, 那么\( E\) 在任意 \( G\)中作用下也稳定(这是因为 \(G\)的紧致性保证了其任意元素\( g\) 的行列式为\(1\), 于是\( g(E)\) 明显包含 \(K\), 且体积与\( E\)相等, 由John椭球的唯一性知 \( E\) 的稳定性), 由此可知存在\(v\in GL_n(\Bbb R)\), 使得对任意\( g\in G\), 有 \( v^{-1}gv(B^n)=B^n\), 故\(v^{-1}Gv\subseteq SO_n(\Bbb{R})\), 也就是说在相差一个共轭的程度上, 正交群是极大的紧子群.

 Posted by at 3:24 pm
Aug 112016
 

集合

\[\{\sqrt n|n\in\Bbb N\; \text{is Square-free integer}\}\]

在有理数域上线性无关.

这其实是非常古老的问题, 早已经有很一般的结果.

先厘清无平方因子整数Square-free integer这个概念: \(1\) 到底是不是无平方因子整数?

wiki 给出的定义是: 不被不是 \(1\) 的完全平方整除的整数称为无平方因子整数. 因此, \(1\) 算无平方因子正整数. 鉴于此, 我们认为: 无平方因子整数定义为”不被质数的平方整除的整数”更为恰当.

下面的证明来自 Iurie Boreico 的文章 Linear Independence of Radicals.

我们把问题写的更清楚一点, 即我们要证明:

\(n_1\), \(n_2\), \(\dotsc\), \(n_k\) 是互不相同的无平方因子正整数; \(a_1\), \(a_2\), \(\dotsc\), \(a_k\) 都是整数. 令

\[S=a_1\sqrt{n_1}+a_2\sqrt{n_2}+\dotsb+a_k\sqrt{n_k},\]

那么 \(S=0\) 当且仅当 \(a_1=a_2=\dotsb=a_k=0\).

第一个办法是指出更精细的结果:

记 \(p_1\), \(p_2\), \(\dotsc\), \(p_N\) 是 \(n_1n_2\dotsm n_k\) 的所有互不相同的质因子. 则存在

\[S^\prime=b_1\sqrt{m_1}+b_2\sqrt{m_2}+\dotsb+b_l\sqrt{m_l},\]

(这里 \(b_1\), \(b_2\), \(\dotsc\), \(b_l\) 都是整数; \(m_1\), \(m_2\), \(\dotsc\), \(m_l\) 都是无平方因子正整数, 并且都没有 \(p_1\), \(p_2\), \(\dotsc\), \(p_N\) 以外的质因子), 使得 \(SS^\prime\ne0\) 是整数. 进而, 顺水推舟, \(S\ne0\).

对 \(N\) 进行归纳.

明显 \(N=0\) 时, 结论为真: 此刻 \(k=1\), \(n_1=1\), 于是 \(S=a_1\ne0\). 令 \(S^\prime=1\) 即可.

 Posted by at 5:04 pm
Jul 042015
 

圆周上的有理点有这么几个情况.

1.  没有有理点.

\[x^2+y^2=3\]

是一个例子.

2. 恰有一个有理点.

比如 \((x+\sqrt2)^2+(y+\sqrt2)^2=4\) 只有原点.

3. 恰有两个有理点.

比如

\[x^2+(y+\sqrt2)^2=3\]

4. 有无穷个有理点  这是我们关心的情形.

很容易证明, 如果一个圆周上有 \(3\) 个有理点, 则有无穷多个有理点在此圆周上, 并且此圆的圆心是有理点, 半径的平方是有理数. 所以, 只要关注

\begin{equation}x^2+y^2=\frac pq\end{equation}

(\(p, q\) 是互质的正整数) 即可.

中心是有理点

方程 \((1)\) 有有理解当且仅当 \(p, q\) 都能表成两个整数的平方和. 在有有理解的情形下, 有无穷多个有理点在这个圆周上, 也就是有无穷多对有理数的平方和是 \(\dfrac pq\).

有几个办法可以定出 \((1)\) 的有理解.

初等一点的办法, 可以从

\[x^2+y^2=a^2+b^2, \]

着手, 这里 \((a,b)\) 是 \((1)\) 的一组有理解, 即  \(a^2+b^2=\dfrac pq\) 为真. 于是

\[(x+a)(x-a)=(b+y)(b-y). \]

当 \(y+b\ne0\), 且 \(x-a\ne0\) 时,

\[\frac{x+a}{y+b}=\frac{b-y}{x-a}. \]

设这个值是有理数 \(t\). 由

\begin{equation}\frac{x+a}{y+b}=\frac{b-y}{x-a}=t\end{equation}

\begin{cases}x+a=t(y+b)\\ t(x-a)=b-y.\end{cases}

这是很简单的线性方程组. 根据 Cramer 法则

\begin{equation}\begin{cases}x=\frac{(t^2-1)a+2bt}{t^2+1}\\ y=\frac{(1-t^2)b+2at}{t^2+1}.\end{cases}\end{equation}

但这并不是我们要寻找的全部有理解, 但也仅仅只有一个点 \((a,-b)\) 不在其中.

下面是一种普遍有效的办法, 这也是代数几何, 椭圆曲线的理论所采纳的途径, 尽管表现形式可能有别.

\begin{equation}x=a+t, \; y=b+tu.\end{equation}

带入 \((1)\) 得

\[(a+t)^2+(b+tu)^2=\frac pq.\]

注意 \(a^2+b^2=\dfrac pq\), 因此

\[2t(a+bu)+t^2(u^2+1)=0\]

导出 \(t=0\) 或

\begin{equation}t=-\frac{2(a+bu)}{u^2+1}.\end{equation}

记得 \((4)\), 于是

\begin{equation}x=a-\frac{2(a+bu)}{u^2+1}=\frac{(u^2-1)a-2bu}{u^2+1}, \; y=b-\frac{2u(a+bu)}{u^2+1}=\frac{(1-u^2)b-2au}{u^2+1}.\end{equation}

从 \((2)\), \((4)\) 看出: \((3)\) 中的 \(t\) 与 \((6)\) 中的 \(u\) 都与两点 \((x,y)\)  与 \((a,b)\) 所成直线的斜率有关, 只不过 \(t\) 表示这个斜率的相反数, 而 \(u\) 就是这个斜率. 这也轻松的解释了为什么 \((3)\) 与 \((6)\) 给出了圆上除 \((a,-b)\) 这一个点以外所有的有理点.

这个手段可以用来搜索更一般的二次曲线

\[ax^2+bxy+cy^2+dx+ey+f=0\]

上的有理点.

中心非有理点

圆心不是有理点的圆上有简洁明了的一般性的结论么? 遗憾的是, 没有这样利索的定理. 随便找一个(中心非有理点的)圆, 很可能(暂时)无法弄清楚到底有几个有理点.

举个例子, 中心在 \((\pi,e)\) 的圆上有几个有理点?

看起来没啥特别, 但这只是表象, 这其实是一个完全不同的问题: \(1,\pi,e\) 在有理数域上线性无关, 即是否存在不全为 \(0\) 的有理数 \(l\), \(m\), \(n\), 使得

\[l\pi+me+n=0.\]

这是一个很有名的 open problem.

我们相信中心在 \((\pi,e)\) 的圆上有至多 \(1\) 个有理点. 遗憾的是, 暂时无法提供理由来说明不能有 \(2\) 个.

 Posted by at 9:05 am
Nov 142014
 

Alexander Grothendieck passed away on November 13, 2014, at the age of 86, in Saint-Girons.

He died Thursday at a hospital in the southwestern town of Saint-Girons, hospital officials said, without specifying the cause of death for privacy reasons. According to French daily Le Monde, Gothendieck had been living for decades in a hideaway home in the nearby village of Lasserre.

Grothendieck was a leading mind behind algebraic geometry — a field with practical applications including in satellite communications. In 1966, he was awarded the Fields Medal.

Grothendieck 离开数学圈后, 并非完全与世隔绝.

Aug 212014
 

Yitang Zhang is giving the last invited talk at ICM 2014, “Small gaps between primes and primes in arithmetic progressions to large moduli”.

Yitang Zhang is giving the last invited talk

Yitang Zhang is giving the last invited talk 1

这是闭幕式前的最后一个 invited talk. 张大师习惯手写, 当场演算.

Yitang Zhang stepped onto the main stage of mathematics last year with the announced of his achievement that is hailed as “a landmark  theorem in the distribution of prime numbers”.

Yitang Zhang is giving the last invited talk

Yitang Zhang is giving the last invited talk 2

Yitang Zhang is giving the last invited talk

Yitang Zhang is giving the last invited talk 3

Aug 152014
 

Opening Ceremony of ICM 2014

Opening Ceremony of ICM 2014

每 4 年举行一次世界数学家大会从 13 日到 21 日在首尔会展中心(COEX)举行.

Martin Groetschel, Secretary-General of IMU, 在开幕式上的讲话说, IMU 有一些倡议. 这些打算之一是 adopt-a-graduate-student: IMU 会扶持发达国家的数学家, 这些数学家愿意给不那么发达国家的工作在相近领域的数学博士提供指导(mentorship).

今年的 Chern Medal 的得主 Phillip Griffiths 选择了 African Mathematics Millennium Science Initiative(AMMSI) 来接受 $250,000.

Donaldson, Tao, Kontsevich, Lurie and Taylor, winners of the Breakthrough Prizes in mathematics, 每人给了 $100,000 给一个目的是支持发展中国家的博士的$500,000 基金会. 具体采用何种方式来实施帮助不得而知, 但已经使用了 “breakout graduate fellowships” 这样的措词.

Martin Groetschel 还指出, 韩国的数学出版物的数量当前是世界第 11 位, 但韩国数学家 1981 年发表在国际期刊上的论文仅仅只有 3 篇. 韩国从几乎一无所有, 建立了现在的数学传统, 仅仅过了一代人的时间.

Masked dancers

Masked dancers

1981 年成为国际数学联盟的最低等级第1军成员国的韩国时隔 33 年从援助受惠国成为供应国, 这将成为向全世界宣传韩国数学的契机.

韩国总统朴槿惠出席了当天的开幕式, 她强调了数学给我们的生活带来的影响, 向帮助韩国数学升至世界水平的世界数学界表达了谢意.

ICM 开幕式的一个小插曲是, 戴着面具的舞蹈演员走上舞台时, Maryam Mirzakhani 的不到三岁的女儿 Anahita 发出恐怖的尖叫, 许久才平静下来. Timothy Gowers 有一个 6 岁的儿子.

The Fields Medal Committee for 2014 consisted of Daubechies, Ambrosio, Eisenbud, Fukaya, Ghys, Dick Gross, Kirwan, Kollar, Kontsevich, Struwe, Zeitouni and Günter Ziegler.

The program committee consisted of Carlos Kenig (chair), Bolthausen, Alice Chang, de Melo, Esnault, me, Kannan, Jong Hae Keum, Le Bris, Lubotsky, Nesetril and Okounkov.

Kyoto University professor Shigefumi Mori has been elected president of the International Mathematical Union(IMU), becoming the first head of the group from Asia.

The ICM executive committee for the next four years will be Shigefumi Mori (president), Helge Holden (secretary), Alicia Dickenstein (VP), Vaughan Jones (VP), Dick Gross, Hyungju Park, Christiane Rousseau, Vasudevan Srinivas, John Toland and Wendelin Werner.

好像, 国际数学联盟已经讨论过, 在大会开幕很久之前公布大奖得主的名字, 是否可行.

下次全世界数学家的聚会, 2018 年的八月在巴西. The General Assembly of the IMU in Gyeongju announced on Aug. 11 that Rio de Janeiro would be the site of ICM 2018.

References

  1. Timothy Gowers, ICM2014 — opening ceremony, August 13, 2014
  2. ICM 2014