Jul 112014
 

张益唐暑假在北京.

7 月他在母校北京大学的北京国际数学研究中心 (BICMR) 有一个系列的学术报告: Distribution of Prime Numbers and the Riemann Zeta Function I, II, III. 这个报告分三场, 原定时间是 July 8, 10, 15,  2014 16:00-17:00, 地点是镜春园 78 号院的 77201 室.

BICMR 官网上这个报告的 Abstract 是这么写的:

The distribution of prime numbers is one of the most important subjects in number theory.

There are many interesting problems in this field. It may not be difficult to understand the problems themselves, but the solutions are extremely difficult.

In this series of talks we will describe the application of certain analytic tools to the distribution of prime numbers. In particular, the role played by the Riemann zeta function will be discussed. We will also describe some early and current researches on the Riemann Hypothesis.

These talks are open to everyone in the major of mathematics, including undergraduate students.

Yitang Zhang at BICMR Distribution of Prime Numbers and the Riemann Zeta Function

Yitang Zhang at BICMR :Distribution of Prime Numbers and the Riemann Zeta Function

8 日下午 4 点, 田刚现身. 因为人比较多, 改为在镜春园82号甲乙丙楼的中心报告厅进行. 主持人刘若川是 1999 年的 IMO 金牌(他本来也是 1998 年中国国家队的队员).

报告从复分析开始, 解析开拓,  zeta 函数的定义, 留数定理, 伯努利数, 然后

\[\zeta(2k)=\sum_{n=1}^\infty\frac1{n^{2k}}=(-1)^{k+1}\frac{(2\pi)^{2k}B_{2k}}{2(2k)!}\]

的两个证明:一个是欧拉给的, 一个来自 Riemann.

张大师说: 欧拉的算功无双, 本来可以证明 \(\zeta(3)\) 是无理数的, 他错过了这个证明.

听报告的人, 会知道张大师非常强调复变函数的极端重要性! 复变不行的人, 没法玩解析数论.

10 日下午 4 点的第二场, 依旧在镜春园82号甲乙丙楼的中心报告厅. 不过, 15 日的一场会在镜春园 78 号院的 77201 室, 16:30 开始.

大量的使用复变, 满黑板的解析数论公式. 今天的主要任务是质数定理的证明, 以及黎曼假设在质数分布的作用.

15 日下午 4:30 的最后一场, 要深入一点. 田刚坐在教室最后一排, 刘若川, 许晨阳坐在教室左边的走廊.张大师谈到有 Goldston, Pintz and Yildirim 的工作, 说他自己最大的贡献是把 \(c\) 改进为 \(\dfrac14+\dfrac1{1168}\). 

Jun 232014
 

张益唐今天在晨兴数学中心做了一个报告 “A Transition Formula for Mean Values of Dirichlet Polynomials”. 最初的安排是上午 9:30 开始, 地点是晨兴 110 室. 但, 实际的开始时间大概是 9:28, 地点改在几米远的思源楼报告厅. 主持人是王元.

Yitang Zhang made a speech on number theory on June 23 at MCM

Yitang Zhang made a speech on number theory on June 23 at MCM

张老师的这个报告是晨兴数学中心今年的解析数论讨论班的一部分

Jun 152014
 

Hillary Clinton 的讲述她在国务院工作的故事的新书 “Hard Choices” 6 月 10 日登录全美各书店. Hillary Clinton 正在巡回全国, 签名售书.

Hillary Clinton-Hard Choices

Hillary Clinton: Hard Choices

当地时间 14 日, 希拉里在首都华盛顿附近一家 “接地气” 的仓储连锁超市, 举行第四场签名售书活动. 这家店毗邻五角大楼, 国防部, 国务院等部门的员工是这里的“常客”, 超市创始人是民主党的“提款机”.

有不少大人物亲临现场. 佐治亚州的国会众议员路易斯(John Lewis) 是希拉里的支持者, 也来为希拉里捧场. 联邦最高法院大法官 Sonia Sotomayor 刚好在大多数的摄影师和电台记者离开后来到希拉里的签售点: Sotomayor 也买了一本. 当然, 希拉里也为大法官签上了自己的大名!

在大陆可以用 200 人民币元多一点买到这书的英文原版.

据 John Friedlander, Henryk Iwaniec 在 arXiv 上传的论文 Close encounters among the primes, 张益唐的工作使他们有了修订 “Opera De Cribro” 的想法: 加入张益唐的工作, 强调筛法在这个方法中的作用.

 Posted by at 6:20 pm
Feb 252014
 

Annals, Volume 179, Issue 3 – May 2014, has just been published online. Yitang Zhang’s paper “Bounded gaps between primes” is the seventh paper, Pages 1121-1174.

虽然张的论文去年 5 月就已经可以下载, 但现在才是正式出版.

多数文章, 都是依靠 Annals 得到荣耀, 但张益唐的论文会给 Annals 带来光荣.

 

Feb 162014
 

Yitang Zhang wins the 2014 Rolf Schock Prize in Mathematics, for his spectacular breakthrough concerning the possibility of an infinite number of twin primes. The Royal Swedish Academy of Sciences decided the laureate.

颁奖典礼将于 2014 年 10 月 22 日在瑞典斯德哥尔摩举行. 2014年肖克奖奖金合计 240 万瑞典克朗, 单个奖项的奖金为60万瑞典克朗(约合9万美元).

Feb 112014
 

Acta Arithmetica(ISSN: 0065-1036(print) 1730-6264(online)) is a scientific journal of mathematics publishing papers on number theory. It was established in 1935 by Salomon Lubelski and Arnold Walfisz. The journal is published by the Institute of Mathematics of the Polish Academy of Sciences.

1935 年, Salomon Lubelski 和 Arnold Walfisz 创立了Acta Arithmetica.

Acta Arithmetica 是一个数学杂志, 发表数论方面的原创研究论文, 由 Polish(波兰)科学院的数学研究所出版. 从 1995 年开始, Acta Arithmetica 每年出版 5 卷(2012 年有 6 卷; 1996-2000 年间, 每年 4.5 卷), 刊登 80-100 篇论文.

目前, Acta Arithmetica 第 1-95 卷是 Open Access(开放存取), 而第 96 卷以及第 96 卷之后, 读者需要订阅才可以看到全文. 因为第 96 卷的后 2 期在 2001 年刊发, 因此, 任何人都可以及时, 免费, 不受任何限制地通过网络获取 2000 年以及之前的所有 Acta Arithmetica, 除了 2000 年最后的第 96 卷的前 2 期.

Jan 192014
 

黎景辉, 赵春来合著的 “模曲线导引(Introduction to Modular Curves)” 出了新版. 北京大学出版社(Peking University press) 2014 年 1 月已出第二版.

Introduction to Modular Curves

Introduction to Modular Curves

本书的目的在于介绍模形式的几何理论的背景知识. 本书可供数学系的研究生作为教材, 也可以供从事数论, 代数几何等专业的数学工作者使用. 作者在2002年出版本书第一版之后, 近些年又做了大量的修订, 使得该书的内容更完善更前沿.

就内容而言, 首先是修正了一些错误. 其次, 第一章从范畴开始, 附带 Abel 范畴, 第四章谈到了 2-范畴理念, 补充了形变和叠, 第三章增加了层范畴和上同调群, 第七章加进了椭圆曲线, 第十章讲解了 Ramanujan 猜想的证明.

本书不是初级读物. 亲如果想修炼神功, 请先学一些代数几何, 模形式, 代数数论. 认真的搞懂本书后, 就可以登堂入室, 看懂最新的进展了.

黎景辉是澳大利亚悉尼大学数学系教授, 主要研究方向是代数数论. 他的博士是 1974 年在耶鲁大学拿到的.

赵春来是北京大学数学学院教授, 主要研究方向亦是代数数论.

目录

第 1 章 范畴   1
第 2 章 模空间  43
第 3 章 层      51
第 4 章 叠     110
第 5 章 Hilbert 函子   139
第 6 章 Picard 函子     168
第 7 章 模曲线        187
第 8 章 微分形式    208
第 9 章 TATE 曲线   224
第 10 章 模形式   249
参考文献
索引

作者: 黎景辉, 赵春来
版次: 2
开本: 16开
装订: 平
字数: 267 千字
页数: 296
ISBN: 978-7-301-23438-9
条形码: 9787301234389
出版日期: 2014-01-09
定价: 35 人民币元

Jan 182014
 

The 2014 Wolf Prize in Mathematics is awarded to Peter Sarnak, for his deep contributions in analysis, number theory, geometry, and combinatorics.

Peter Sarnak is on the permanent faculty at the School of Mathematics of the Institute for Advanced Study, Princeton, NJ, USA.

Peter Clive Sarnak (born December 18, 1953) graduated University of the Witwatersrand (B.Sc. 1975) and Stanford University (Ph.D. 1980), under the direction of Paul Cohen.

Prof. Sarnak is a mathematician of an extremely broad spectrum with a far-reaching vision. He has impacted the development of several mathematical fields, often by uncovering deep and unsuspected connections. In analysis, he investigated eigenfunctions of quantum mechanical Hamiltonians which correspond to chaotic classical dynamical systems in a series of fundamental papers. He formulated and supported the “Quantum Unique Ergodicity Conjecture” asserting that all eigenfunctions of the Laplacian on negatively curved manifolds are uniformly distributed in phase space. Sarnak’s introduction of tools from number theory into this domain allowed him to obtain results which had seemed out of reach and paved the way for much further progress, in particular the recent works of E. Lindenstrauss and N. Anantharaman. In his work on L-functions (jointly with Z. Rudnick) the relationship of contemporary research on automorphic forms to random matrix theory and the Riemann hypothesis is brought to a new level by the computation of higher correlation functions of the Riemann zeros. This is a major step forward in the exploration of the link between random matrix theory and the statistical properties of zeros of the Riemann zeta function going back to H. Montgomery and A. Odlyzko. In 1999 it culminates in the fundamental work, jointly with N. Katz, on the statistical properties of low-lying zeros of families of L-functions. Sarnak’s work (with A. Lubotzky and R. Philips) on Ramanujan graphs had a huge impact on combinatorics and computer science. Here again he used deep results in number theory to make surprising and important advances in another discipline.

By his insights and his readiness to share ideas he has inspired the work of students and fellow researchers in many areas of mathematics.