Oct 062017
 

Darboux (14 August 1842-23 February 1917) 是法国数学家.

Darboux’s theorem 是单变量微分学的一个简单的定理, 但大学一年级的分析的教科书上通常却没有这个结果. 这里指的是分析(analysis)中的 Darboux’s theorem, 而不是微分几何(Differential geometry)中关于微分形式(Differential form)的那个Darboux’s theorem.

Darboux’s theorem  函数 \(f(x)\) 在区间 \(I\) 上可导, 则导数 \(f^\prime(x)\) 具有介值性质.

Sam B. Nadler, Jr 在 [1] 给出的一个证明揭示了一些 Darboux’s theorem 没能反映的性质. 为了突出函数的斜率, 我们把关于连续函数的斜率写成单独的引理:

Lemma 1 设 \(I\)  是一个区间, \(f\in C(I)\). 令 \(C\) 表示所有连接 \(f\) 的图像上(不同)点的弦的斜率的集合, 即

\begin{equation}C=\bigg\{\frac{f(s)-f(r)}{s-r}: s, r\in I\;\;\text{and}\;\; s\ne r\bigg\}.\end{equation}

那么, \(C\) 是一个区间.

Proof  固定 \(p\in C\),

\begin{equation}p=\frac{f(a)-f(b)}{a-b}, \; a\lt b, \; \;a, b\in I.\end{equation}

我们来指出, 有 \(C\) 中的区间连接 \(p\) 和 \(C\) 中异于 \(p\) 的任一点 \(q\). 无妨

\begin{equation}q=\frac{f(c)-f(d)}{c-d}, \; c\lt d, \;\;c, d\in I.\end{equation}

下面的公式定义了一个函数 \(\varphi\colon [0, 1]\to C\), 并且 \(\varphi(0)=p\), \(\varphi(1)=q\):

\begin{equation}\varphi(t)=\frac{f((1-t)a+tc)-f((1-t)b+td)}{((1-t)a+tc)-((1-t)b+td)},\;\;\; t\in[0, 1].\end{equation}

既然 \(a\lt b\), \(c\lt d\), 当 \(t\in[0, 1]\), 有 \((1-t)(a-b)+t(c-d)\ne0\); 写法稍加改变, 即对每一个\(t\in[0, 1]\), \(\big((1-t)a+tc\big)-\big((1-t)b+td\big)\ne0\). 故而, 上面的公式确实定出了一个函数 \(\varphi\).

\(\varphi\) 给出了将点 \((a, f(a))\) 和 \((b, f(b))\) 关于 \(x\) 轴”线性地”, 沿着 \(f\) 的图像滑动到点 \((c, f(c))\) 和 \((d, f(d))\) 而得到的弦的斜率; \(\varphi\) 是连续的. 由价值定理, \(\varphi([0, 1])\) 是一个区间. 从 \(\varphi(0)=p\), \(\varphi(1)=q\), 我们已经证明了 \(p\) 和 \(C\) 中的每一点 \(q\) 可被 \(C\) 中的一个区间连接. 至此, 可以判定 \(C\) 是一个区间.

现在来证明比 Darboux’s theorem 稍强一点的结论.

定理 2 令 \(D\) 表示 \(f^\prime\) 在 \(I\) 上所有取值的集合

\begin{equation}D=\big\{f^\prime(x): x\in I\big\}.\end{equation}

那么, \(D\) 是一个区间, 并且 \(C\subset D\subset\overline{C}\)(\(C\) 的闭包).

事实上, 中值定理指出 \(C\subset D\). 导数的定义给出 \(f^\prime\) 的每个取值是弦的斜率的极限; 此导致 \(D\subset\overline{C}\). 现在, 我们已经得出 \(C\) 是区间, 且 \(C\subset D\subset\overline{C}\). 我们立刻知道, \(D\) 是区间.

接下来的这个证明有异曲同工之妙, 在蛮多地方出现.

记 \(c=\frac{a+b}2\). 定义函数

\begin{equation}\alpha(t)=\begin{cases}a,&a\leqslant t \leqslant c\\2t-b,&c\leqslant t \leqslant b\end{cases}\end{equation}

\begin{equation}\beta(t)=\begin{cases}2t-a,&a\leqslant t \leqslant c\\b,&c\leqslant t \leqslant b\end{cases}\end{equation}

\(\alpha(t)\) 与 \(\beta(t)\) 都是区间 \([a, b]\) 上的连续函数; 当 \(a\lt t\lt b\), 有 \(a\leqslant\alpha(t)\lt\beta(t)\leqslant b\).

现在, 作

\begin{equation}g(t)=\begin{cases}f^\prime(a),&t=a\\ \dfrac{f(\beta(t))-f(\alpha(t))}{\beta(t)-\alpha(t)},&a\lt t\lt b\\ f^\prime(b),&t=b\end{cases}\end{equation}

 References
  1. Sam B. Nadler, Jr. A proof of Darboux’s Theorem, The Amer Math Monthly, Vol 117(2010), No.2, 174-175
 Posted by at 4:59 am
Sep 152017
 

群通常是这么定义的: 如果在一个非空集合 \(G\) 上的一个二元运算(群运算), 记作 \(ab\), 满足下面的三个条件:

  •  结合律: 对于 \(G\) 中任意元素 \(a\), \(b\), \(c\), 有 \((ab)c=a(bc)\);
  • 存在(左)单位元: \(G\) 中有一个 \(e\), 使得对于 \(G\) 中任意元素 \(a\), 有 \(ea=a\);
  • 存在(左)逆元: 对 \(G\) 中任意元素 \(a\), 存在 \(G\) 中元素 \(b\), 使得有 \(ba=e\),

那么, \(G\) 称为一个群(Group).

当然, 我们可以把这个定义的后两个条件改为存在右单位元及存在右逆元. 事实上, 不难证明这两种定义是完全等价的.

那么, 能不能只改一个条件? 即, 能不能在群定义的”存在左单位元”改为”存在右单位元”或者”存在左逆元”改为”存在右逆元”? 答案是: 不能!

Colonel Johnson 在 A mixed non-group, The American Mathematical Monthly, Vol. 71, No. 7, pp. 785,  举了一个例子来说明, 非空集合 \(G\) 上的二元运算满足结合律, 并且每个元素有左单位元和右逆元, 然而 \(G\) 不一定是一个群.

记 \(G\) 是所有这样形式的 \(2\times2\) 的矩阵

\[M=\left(\begin{array}{cc}x&y\\x&y\end{array}\right),\]

这里 \(x\), \(y\) 是实数, 且 \(x+y\ne0\).

容易验证 \(G\) 关于矩阵乘法是封闭的, 当然也就满足结合律.

矩阵

\[J=\left(\begin{array}{cc}0&1\\0&1\end{array}\right)\]

属于 \(G\), 并且是左单位元, 即对 \(G\) 中每一个矩阵 \(M\), 有 \(JM=M\) 为真.

设 \(M\) 是 \(G\) 的任意一个矩阵, 则

\[\left(\begin{array}{cc}0&\frac1{x+y}\\0&\frac1{x+y}\end{array}\right)\]

属于 \(G\), 并且是 \(M\) 的右逆元.

然而, \(J\) 不是右单位元, 于是 \(G\) 对于矩阵乘法不成为一个群.

群的早期历史

群的概念的出现, 来源于数学的几个领域.

首先是多项式方程的求解.

第二个系统的用到群的领域是几何, 尤其是对称群在 Felix Klein 在 1872 年的 Erlangen program 中显示了重要性.

第三个推动群的进展的领域是数论.

 Posted by at 11:28 pm
Aug 162015
 

本文作者 xida

Jordan 标准形定理是线性代数中的基本定理,专门为它写一篇长文好像有点多余:这方面的教材讲义实在是太多了!一个陈旧的定理还能写出什么新意来呢?

理由有两个。第一个原因是我曾经在给学生讲这个定理的时候,突然发现不知道该怎么启发学生为好。虽然我知道 Jordan 标准形定理的很多种证法,照念几个不在话下,但是感觉有点疙疙瘩瘩的:怎么才能说清定理背后的想法,让学生觉得定理的成立是顺理成章的呢?于是我知道我对这个定理的理解还有模糊的地方。

第二个原因是 Jordan 块有一个重要的代数性质是通常教材中不讲的,而这个性质是代数学中一类重要而常见的性质的雏形,这就是不可分解性。与之对应的是可对角化的线性变换的完全可约性。从一开始就让学生接触这些现象是有好处的。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

我们从中学就知道整数环和多项式环有唯一因子分解定理:每个整数可以唯一地分解为素数的乘积,每个(域上的)多项式可以唯一地分解为不可约多项式的乘积。在数学里面有很多这样的唯一分解定理,而我们现在想知道:有没有所谓的 “线性变换的唯一分解定理” 呢?可以猜测如果有这样的定理存在,那么大概可以表述为如下的样子:

线性变换的唯一分解定理(粗糙的版本):设 \(V\) 是域 \(F\) 上的有限维向量空间,\(A\) 是 \(V\) 上的线性变换,则 \(A\) 可以唯一地分解为若干个 “简单的” 线性变换的组合,而且这些 “简单的” 线性变换本身不能再分解。

这个表述很不清楚,整数和多项式的分解就是表示为因子的乘积,那么什么是线性变换的分解呢?什么又是不可分解的线性变换呢?正确的概念是直和:

设 \(T\) 是 向量空间 \(V\) 上的线性变换,如果 \(V\) 可以分解为一些非平凡的子空间的直和 \(V=V_1\oplus\cdots\oplus V_k\),使得每一个 \(V_i\) 都是 \(T-\) 不变的子空间,则称 \(T\) 是可以分解的; 如果 \(V\) 不存在这样的分解,则称 \(T\) 是不可分解的线性变换。

这样我们就可以比较准确的表述线性变换的唯一分解定理了:

线性变换的唯一分解定理(修正的版本):设 \(V\) 是域 \(F\) 上的有限维向量空间,\(T\) 是 \(V\) 上的线性变换,则 \(T\) 可以唯一地分解为若干个不可分解的线性变换的直和。

这里有一个很严重的问题需要说明:在一般的域 \(F\) 上 研究 “不可分解” 的线性变换是一个棘手的多的问题,这个问题的解决要用到我们后面要学的有理标准形,而在复数域上问题就简单很多,这就是 Jordan 标准形做的事情。所以在本文中,域 \(F\) 都假定为复数域 \(\mathbb{C}\)。

那么什么样的线性变换算是不可分解的线性变换呢?

最简单也是最重要的例子就是移位算子:假设 \(T\) 在 \(V\) 的一组基 \(\{v_1,\cdots,v_n\}\) 的作用是一个向右的移位:

\[ T:\quad v_n\rightarrow v_{n-1}\rightarrow\cdots\rightarrow v_1\rightarrow0.\]

则称 \(T\) 是一个移位算子。\(T\) 在这组基下的矩阵

\[J_0=\begin{pmatrix}0&1&&\\&\ddots&\ddots&\\&&0&1\\&&&0\end{pmatrix}.\]

\(J_0\) 叫做特征值为 0 的 Jordan 块。注意 \(T\) 是一个幂零算子:\(T^n=0\) ,它仅有唯一的特征值 \(0\).

当然需要说明移位算子 \(T\) 确实是不可分解的线性变换。如果 \(V=W\oplus N\) 为两个非平凡 \(T-\) 不变子空间的直和,则 \(T\) 在 \(W\) 和 \(N\) 上各有一个特征值为 0 的特征向量,因此齐次线性方程组 \(TX=0\) 的解空间至少包含两个线性无关的向量。但是 \(T\) 的秩是 \(n-1\) ,因此 \(TX=0\) 的解空间是 1 维的,这就导致了矛盾。

用同样的方法可以说明给移位算子 \(T\) 加上一个数乘变换以后得到的仍然是不可分解的线性变换:设 \(\lambda\in\mathbb{C}\) ,\(S=T+\lambda I\) ,则 \(S\) 也是不可分解线性变换,其对应的矩阵

\[J_\lambda=\begin{pmatrix}\lambda&1&&\\&\ddots&\ddots&\\&&\lambda&1\\&&&\lambda\end{pmatrix}\]

叫做特征值为 \(\lambda\) 的 Jordan 块。

现在我们已经找到了一族不可分解的线性变换,那么它们是否就构成了全部的线性变换呢?答案是肯定的,这就是 Jordan 标准形定理:

Jordan 标准形定理:设 \(T\) 是 \(\mathbb{C}\) 上有限维向量空间 \(V\) 上的线性变换,则存在 \(V\) 的一组基使得 \(T\) 在这组基下的矩阵为 Jordan 块的直和:

\[T=J_{\lambda_1}\oplus\cdots\oplus J_{\lambda_r}.\]

这种分解是唯一的,意思是如果存在 \(V\) 的另一组基使得 \(T\) 的矩阵也是 Jordan 块的直和

\[T=J_{\mu_1}\oplus\cdots\oplus J_{\mu_s},\]

则 \(r=s\) 且适当重排后有 \(J_{\lambda_i}=J_{\mu_i}\)。

定理的结论包含存在性和唯一性两部分,我们先来处理存在性的证明。

第一步:转化为幂零的情形

定理 【广义特征子空间分解】:设 \(T\) 的特征多项式为 \(f(x)\),而且 \(f(x)\) 在复数域上分解为一次因式的乘积

\[f(x)=(x-\lambda_1)^{n_1}\cdots(x-\lambda_k)^{n_k},\]

这里的 \(\lambda_i\) 互不相同。令 \(V_i=\ker (T-\lambda_i I)^{n_i}\),则每个 \(V_i\) 都是 \(T-\) 不变子空间而且

\[ V=V_1\oplus\cdots\oplus V_m.\]

这样就把 \(V\) 分解为一些不变子空间 \(V_i\) 的直和, \(T\) 限制在每个 \(V_i\) 上只有单一的特征值 \(\lambda_i\)。

证明:显然 \(V_i\) 都是 \(T-\) 不变子空间。要证明 \(V\) 是它们的直和,我们先从一个特别的结论开始:

对每个 \(1\leq i\leq k\) 都存在多项式 \(\pi_i(x)\) 使得 \(\pi_i(x)\equiv1\mod (x-\lambda_i)^{n_i}\) ,但是对其它 \(j\ne i\) 有 \(\pi_i(x)\equiv0\mod (x-\lambda_j)^{n_j}\) 。线性变换 \(\pi_i(T)\) 不是别的,正是 \(V\) 到子空间 \(V_i\) 的投影。

由于所有 \((x-\lambda_i)^{n_i}\) 的根互不相同,因而两两互素,所以根据中国剩余定理满足要求的 \(\pi_i(x)\) 是存在的。显然 \(\pi_i(T)\) 在 \(V_i\) 上是恒等变换,而在其余的 \(V_j\ne V_i\) 上是 0。\(\pi(x)=\pi_1(x)+\cdots+\pi_k(x)\) 模任何 \((x-\lambda_i)^{n_i}\) 都是 1,因此 \(\pi(x)-1\) 可以被 \(T\) 的特征多项式 \(f(x)\) 整除,从而 \(\pi(T)-I\) 在 \(V\) 上是零变换,这就证明了 \(\pi(T)\) 是 \(V\) 上的恒等变换。对任何 \(v\in V\),

\[v=\pi(T)v=\pi_1(T)v+\cdots+\pi_k(T)v.\]

我们来说明 \(\pi_i(T)v\in V_i\) ,从而 \(V=V_1+\cdots+V_k\) 。这是因为 \((x-\lambda_i)^{n_i}\pi_i(x)\) 可以被 \(f(x)\) 整除,因此 \((T-\lambda_i)^{n_i}\pi_i(T)v=0\) ,这就证明了 \(\pi_i(T)v\in V_i\) 。

我们再来说明这是直和。如果 \(v_i\in V_i\) 满足 $v_1+\cdots+v_k=0\) ,用 \(\pi_i(T)\) 作用在左边得到(根据前面的分析,\(\pi_i(T)\) 在 \(V_i\) 上是恒等变换而在其它 \(V_j\) 上是 0

\[\pi_i(T)v_1+\cdots+\pi_i(T)v_k=\pi_i(T)v_i=v_i=0,\]

由 \(i\) 的任意性得到 \(v_1=\cdots=v_k=0\),这就证明了是直和。

用中国剩余定理来构造特殊的算子(通常是给定的算子 \(T\) 的多项式)是一个普遍而重要的技巧,这里的证明也许有点高端但却是最简洁的。

现在我们只需要考虑单个子空间 \(V_i\) 。令 \(N=T-\lambda_i\) ,则 \(N\)  在 \(V_i\)  上是幂零线性变换:\(N^{n_i}=0\) ,这样问题归结为分析幂零线性变换 \(N\)  的结构。

幂零线性变换更简单的原因是它可以表示为移位算子的直和,而移位算子的结构非常简单。

第二步:对幂零变换的情形加以证明

设 \(N\) 是 \(V\) 上的幂零线性变换,要证明存在 \(V\) 的一组基,使得 \(N\) 的矩阵是若干 Jordan 块的和。注意一个 Jordan 块对应的是一个移位轨道

\[ v\rightarrow Nv\rightarrow \cdots \rightarrow N^kv\rightarrow 0.\]

我们要证明存在若干条这样的互不相交的轨道,这些轨道所包含的全部非零向量构成 \(V\) 的一组基。

这一步的证明方法很多,但是相差不是很大,具体喜欢那种要看个人主观,这里介绍的是最简单也是最容易被初学者接受的一种。

对 \(V\) 的维数 \(\dim V\) 归纳,\(\dim V=1\) 时显然结论成立。

现假设结论对所有维数小于 \(\dim V\) 的向量空间成立,我们考虑 \(V\) 的像空间 \(N(V)\)。这是一个 \(N-\) 不变子空间,且由于 \(N\) 是幂零线性变换所以 \(\dim N(V)<\dim V\),所以可以对子空间 \(N(V)\) 使用归纳假设:存在 \(N(V)\) 的一组基如下,它们构成 \(q\) 条不相交的轨道 \(\mathcal{O}_1,\cdots,\mathcal{O}_q\):

\begin{equation*}\begin{split}&v_{1,1}\rightarrow v_{1,2}\rightarrow\cdots\rightarrow v_{1,n_1}\rightarrow 0.\\&v_{2,1}\rightarrow v_{2,2}\rightarrow\cdots\rightarrow v_{2,n_2}\rightarrow 0.\\&\cdots\cdots\cdots\\& v_{q,1}\rightarrow v_{q,2}\rightarrow\cdots\rightarrow v_{q,n_q}\rightarrow 0.\end{split}\end{equation*}

由于 \(v_{i,1}\in N(V)\) 因此可以设 \(v_{i,1}=Nw_i\),从而我们得到一组更长的轨道(就是在前面加上一项)

\begin{equation*}\begin{split}&w_1\rightarrow v_{1,1}\rightarrow v_{1,2}\rightarrow\cdots\rightarrow v_{1,n_1}\rightarrow 0.\\&w_2\rightarrow v_{2,1}\rightarrow v_{2,2}\rightarrow\cdots\rightarrow v_{2,n_2}\rightarrow 0.\\&\cdots\cdots\cdots\\&w_q\rightarrow v_{q,1}\rightarrow v_{q,2}\rightarrow\cdots\rightarrow v_{q,n_q}\rightarrow 0.\end{split}\end{equation*}

那么这些新轨道包含的向量是否构成 \(V\) 的一组基?答案是我们还要补上一些在 \(V\) 中长度是 \(1\),但是在 \(N(V)\) 中 “消失” 了的轨道:注意 \(\{v_{1,n_1},\cdots,v_{q,n_q}\}\) 是 \(\ker N\) 中的线性无关元,但是 \(\ker N\) 还可能有其它的基向量。将它们扩充为 \(\ker N\) 的一组基

\[ \{ v_{1,n_1},\cdots,v_{q,n_1}\}\cup \{ w_{q+1},\cdots,w_{K}\}\quad K=\dim\ker N.\]

从而我们最终得到下面的轨道图:

\begin{equation*}\begin{split}\mathbf{w_1\rightarrow} v_{1,1}\rightarrow v_{1,2}\rightarrow\cdots\rightarrow v_{1,n_1}\rightarrow 0.&\\ \mathbf{w_2\rightarrow} v_{2,1}\rightarrow v_{2,2}\rightarrow\cdots\rightarrow v_{2,n_2}\rightarrow 0.&\\ \cdots\cdots\cdots&\\ \mathbf{w_q\rightarrow} v_{q,1}\rightarrow v_{q,2}\rightarrow\cdots\rightarrow v_{q,n_q}\rightarrow 0.&\\ \mathbf{w_{q+1}\rightarrow} 0.&\\ \cdots\cdots&\\ \mathbf{w_K\rightarrow0}.\end{split}\end{equation*}

你可以看到 \(w_{q+1},\ldots,w_K\) 正是那些在 \(V\) 中长度为 \(1\),但是在 \(N(V)\) 中消失了的轨道。

最后只剩下验证这些向量确实构成 \(V\) 的一组基。显然这些向量一共有 \(\dim N(V)+\dim\ker N=\dim V\) 个,所以只要说明它们是线性无关的。

假设有线性关系

\[\cdots+(c_0w_i+c_1v_{i,1}+\cdots+c_{n_i}v_{i,n_i})+\cdots+\sum_{j=q+1}^K d_jw_j=0,\]

我们要说明出现在上式中的所有系数都是 \(0\)。左边用 \(N\) 作用得到

\[\cdots+(c_0v_{i,1}+c_1v_{i,2}+\cdots+c_{n_i-1}v_{i,n_i})+\cdots=0.\]

这是一个关于 \(N(V)\) 的一组基的一个线性关系,于是 \(c_0=\cdots=c_{n_i-1}=0\),从而剩下的线性关系为

\[\cdots+c_{n_i}v_{i,n_i}+\cdots+\sum_{j=q+1}^K d_jw_j=0.\]

而这是一个关于 \(\ker N\) 的一组基的一个线性关系,于是 \(c_{n_i}=d_{q+1}=\cdots=d_K=0\),从而所有的系数都是 0,这就完成了 Jordan 标准形存在性的证明。

分解唯一性的证明:

最后我们还剩下分解唯一性定理的证明,这部分要简单许多,主要是利用了 Jordan 块的一个很特殊的性质:设

\[J_0=\begin{pmatrix}0&1&&\\&\ddots&\ddots&\\&&0&1\\&&&0\end{pmatrix}_{n\times n}\]

是一个 0 特征值的 Jordan 块,则 \(J_0^2\) 就是把斜对角线上的 1 向右上方平移一步,\(J_0^3\) 就是向右上方平移两步,以此类推,\(J_0^{n-1}\) 变成

\[\begin{pmatrix}0&\cdots&1\\&\ddots&\vdots\\&&0\end{pmatrix},\]

最终 \(J_0^n=0\)。用这个规则我们可以计算出对任何 \(\lambda\in\mathbb{C}\) 和 \(m\in\mathbb{Z}^+\),\(T\) 的 Jordan 标准形中 \(m\) 阶 Jordan 块 \(J_{\lambda,m}\) 的个数 \(n_m\) 来:

\[ n_m=\text{rank}(T-\lambda I)^{m-1}-2\cdot\text{rank}(T-\lambda I)^{m}+\text{rank}(T-\lambda I)^{m+1}.\]

道理是这样的:以 \(\lambda=0\) 为例子来计算。会算 0 特征值 Jordan 块的个数,你就会算任何特征值的 Jordan 块的个数。设 \(T\) 的一个 Jordan 标准形为

\[ T= \left(\bigoplus_{k\geq1}n_k J_{0,k}\right) \bigoplus_{\mu\ne0}J_\mu,\]

那么 \(T^m\) 就是

\[T^{m}= \left(\bigoplus_{k\geq1}n_k J_{0,k}^{m}\right) \bigoplus_{\mu\ne0}J_{\mu}^{m}.\]

注意后半部分 \(\oplus_{\mu\ne0}J^m_\mu\) 对任何 \(m\) 都是保持满秩的,因此这部分的秩始终不变。前面的部分中所有阶数小于等于 \(m\) 的 Jordan 块 \(J_{0,k}(k\leq m)\) 的 \(m\) 次幂都变成了 0 矩阵,\(J_{0,m+1}^m\) 的秩是 1; \(J_{0,m+2}^m\) 的秩是 2 . . . 依次类推,所以

\[ \text{rank}T^m=n_{m+1}\cdot1+n_{m+2}\cdot2+\cdots +\text{rank}\bigoplus_{\mu\ne0}J_\mu^m.\]

同理

\[ \text{rank}T^{m+1}=n_{m+2}\cdot1+n_{m+3}\cdot2+\cdots +\text{rank}\bigoplus_{\mu\ne0}J_\mu^{m+1}.\]

因此

\[\text{rank}T^m-\text{rank}T^{m+1}=n_{m+1}+n_{m+2}+\cdots,\]

仍然同理

\[\text{rank}T^{m-1}-\text{rank}T^{m}=n_{m}+n_{m+1}+\cdots,\]

所以

\[n_m=\text{rank}T^{m-1}-2\cdot\text{rank}T^{m}+\text{rank}T^{m+1}.\]

现在你可以看到 \(n_m\) 的表达式不依赖于具体的基的选择,仅依赖于线性变换自身的相似不变量,所以 \(T\) 的 Jordan 标准形在只差一个排列的意义下是唯一的。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

一个很有意思的问题是,给定

\[J_\lambda=\begin{pmatrix}\lambda&1&&\\&\ddots&\ddots&\\&&\lambda&1\\&&&\lambda\end{pmatrix}_{n\times n}\]

为一个特征值 \(\lambda\) 的 Jordan 块,计算其 \(k\) 次幂 \(J_\lambda^k\) 的 Jordan 标准形。

当 \(\lambda\ne0\) 时,

\[J_\lambda^k = \begin{pmatrix}\lambda^k &k\lambda^{k-1}&\ddots &\\&\lambda^k&\ddots&\ddots\\&&\ddots&k\lambda^{k-1}\\&&&\lambda^k\end{pmatrix}.\]

(你知道怎样计算 \(J_\lambda^k\) 吗?记住这个技巧:把多项式 \(x^k\) 在 \(\lambda\) 处 Taloy 展开:

\[x^k=(x-\lambda)^k+a_{k-1}(x-\lambda)^{k-1}+a_1(x-\lambda)+a_0,\]

然后将 \(J_\lambda\) 代入即可。)

和 Jordan 块不可分解性的证明完全一样,我们发现 \(J_\lambda^k-\lambda^k I\) 的秩是 \(n-1\),因此方程组 \(J_\lambda^kX=\lambda^k X\) 的解空间是 \(1\) 维的,从而 \(J_\lambda^k\) 是不可分解的,因此其 Jordan 标准形只有一块,就是

\[\begin{pmatrix}\lambda^k&1&&\\&\ddots&\ddots&\\&&\lambda^k&1\\&&&\lambda^k\end{pmatrix}_{n\times n}.\]

最有意思的情形发生在 \(\lambda=0\) 时。这个时候 Jordan 会均匀的碎裂为一些小的 Jordan 块的和。

这个时候 \(J_0\) 是一个移位算子:

\[J_0:\quad v_n\rightarrow v_{n-1}\rightarrow \cdots \rightarrow v_1\rightarrow 0.\]

整个轨道只有一条。但是 \(J_0^k\) 则是 \(k\) 步 \(k\) 步地跳:

\[J_0^k:\quad \left\{ \begin{array}{l} v_n\rightarrow v_{n-k}\rightarrow \cdots \rightarrow0,\\v_{n-1}\rightarrow v_{n-1-k}\rightarrow \cdots\rightarrow 0,\\\cdots\\v_{n-k+1}\rightarrow v_{n-2k+1}\rightarrow \cdots \rightarrow 0.\end{array}\right.\]

所以 \(J_0^k\) 有 \(k\) 条轨道,每个轨道都是一个 Jordan 块,即 \(J_0^k\) 的标准形中有 \(k\) 个 Jordan 块。设 \(n=qk+r\),这里 \(0\leq r< k\),则这 \(k\) 个 Jordan 块中有 \(r\) 个是 \(q+1\) 阶的,\(k-r\) 个是 \(q\) 阶的。

举个例子就明白了,一个 8 阶的 0 特征值 Jordan 块 \(J_0\),\(J_0^3\) 的 Jordan 标准形是什么样子的?这个时候 \(J_0^3\) 有 3 个轨道 \(\{v_8,v_5,v_2\}\), \(\{v_7,v_4,v_1 \}\), \(\{v_6,v_3\}\),所以 \(J_0^3\) 的 Jordan 标准形有 2 个 3 阶的 Jordan 块和 1 个 2 阶的 Jordan 块。

总结一下:零特征值的 Jordan 块的高次幂一定会分裂,而且是尽可能均匀的分裂;非零特征值的 Jordan 块的任意次幂都不会分裂。

一个不可约的代数结构,在某种限制或者扩张的意义下却能均匀的 “碎裂”,这是代数学中一个常见而重要的现象。比如设 \(f\) 是一个有理数域 \(\Bbb{Q}\) 上的不可约多项式,\(F\) 是 \(\Bbb{Q}\) 的一个正规扩域,则如果 \(f\) 在 \(F\)上是可约的,那么 \(f\) 必然分解成一些次数相同的多项式的乘积:

\[f=f_1f_2\cdots f_r,\quad \deg f_1=\cdots=\deg f_r.\]

类似的还有代数数论中素理想的分解,群表示论中不可约表示(在诱导和限制下)的分解,代数几何中不可约代数簇的分解等等。

Aug 292014
 

双曲几何的故事, 我们从 Poincaré 的单位圆盘模型 (Poincaré disk model) 开始. 首先, 是, 经典的平面上的单位圆.

平面几何的准备

两圆正交

  • 记 \(A\) 是 \(\odot O_1\) 与 \(\odot O_2\) 的一个交点, 过 \(A\) 分别作两圆的切线, 如果两切线垂直, 即 \(AO_1\perp AO_2\), 则称这两圆为正交圆, 或称这两个圆正交.
  • 一条直线如果经过一个圆的圆心, 称这直线与圆正交.
Aug 272014
 

双曲几何 (Hyperbolic Geometry) 的参考书, 有些实际是椭圆几何(Riemannian geometry)的书.

中文

中文书极少. 李忠和周建莹的”双曲几何”可能是中文里惟一的一本完全围绕双曲几何展开论述的书, 而且不系统, 内容很少, 程度只到一点点复分析.

  1. 李忠, 周建莹, 双曲几何, 湖南教育出版社, 1991, 12
  2. 项武义, 基础几何学, 人民教育出版社, 2004, 9
  3. 项武义, 王申怀, 潘养廉, 古典几何学, 高等教育出版社, 2014, 5
  4. 球面上的几何, 人民教育出版社, A 版, B 版
  5. 李忠, 并不神秘的非欧几何, 高等教育出版社, 2010, 6
  6. 王宗儒, 三角形的内角和等于 \(180^\circ\) 吗?, 湖南人民出版社, 1981, 7

英文

  1. Riccardo Benedetti, Carlo Petronio, Lectures on Hyperbolic Geometry, 2003, 7
  2. Birger Iversen, Hyperbolic Geometry, Cambridge University Press, 1992, 12
  3. J. W. Bruce, Linda Keen, Nikola Lakic, Hyperbolic Geometry from a Local Viewpoint. Cambridge University Press, 2007, 03
Apr 242014
 

熟知方阵的迹(Trace)有如下三条性质:

  1. \(\operatorname{Tr}(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B)\);
  2. \(\operatorname{Tr}(kA)=k\operatorname{Tr}(A)\);
  3. \(\operatorname{Tr}(AB)=\operatorname{Tr}(BA)\).

前两条性质说明, \(\operatorname{Tr}(A)\) 是线性空间 \(M_n(K)\) 内的一个线性函数. 第三条性质比较独特. 事实上, 对于线性空间 \(M_n(K)\) 内的线性函数, 第三条性质为”迹” 所独有! 换句话说, 我们可以用下面的方式来定义方阵的迹:

设 \(f\) 是数域 \(K\) 上的线性空间 \(M_n(K)\) 内的一个线性函数, 如果满足如下条件:

\[f(AB)=f(BA),      \forall A, B\in M_n(K)\]

那么, \(f(A)=\dfrac{f(I)}n\cdot \operatorname{Tr}(A)\), 这里 \(I\) 是 \(n\) 阶单位方阵.

姑且把这个论断称为“方阵的迹界定定理”. 如果在这个”定理” 的前提假设增加一条, 即如果 \(f\) 还满足

\[f(I)=n,\]

那么, \(f(A)\) 就是 \(\operatorname{Tr}(A)\).

 Posted by at 8:01 pm