Sep 232017
 

M.D. Choi, T.-Y. Lam 1977 年举了一个例子: The Choi-Lam polynomial \(Q(x, y, z, w) =x^2y^2+y^2z^2+z^2x^2+w^4-4xyzw\) 不能写成多项式的平方和. 与 The Motzkin polynomial 一样, Choi-Lam 多项式也会在以后的证明成为关键角色.

后面的定理 5.2 说明 \(x^2y^2+y^2z^2+z^2x^2+w^4-4xyzw\) 不能写成多项式的平方和实际就是下面定理的后半部分:

定理 3.1 Choi-Lam 多项式

\begin{equation} Q(x, y,z) =x^2y^2+y^2z^2+z^2x^2+1-4xyz,\end{equation}

那么

  • \(Q(x, y,z)\geqslant0\) 为真对任意实数 \(x\), \(y\),  \(z\);
  • \(Q(x, y,z)\) 不能写成多项式的平方和.

方法是完全照搬的. 如果 \(Q(x, y, z)\) 是一些次数(至多)为 \(2\) 的多项式的平方和:

\begin{equation} Q(x, y, z) =\sum_{l=1}^k\Big(a_l+b_lx+c_ly+d_lz+e_lx^2+f_ly^2+g_lz^2+h_lxy+i_lyz+j_lzx\Big)^2,\end{equation}

这里 \(a_l\), \(b_l\), \(c_l\), \(d_l\), \(e_l\), \(f_l\), \(g_l\), \(h_l\), \(i_l\) 和 \(j_l\) 都是实常数, \(l=1\), \(2\), \(\dotsc\), \(k\).

\((1)\) 没有 \(x^4\), \(y^4\), \(z^4\) 项, 因此\((2)\) 的右边的这些项的系数为 \(0\). 于是

\[\sum_{l=1}^ke_l^2=\sum_{l=1}^kf_l^2=\sum_{l=1}^kg_l^2=0,\]

故 \(e_l=f_l=g_l=0\), \(l=1\), \(2\), \(\dotsc\), \(k\).

\((1)\) 没有 \(x^2\) 项, 因此\((2)\) 的右边的 \(x^2\) 项的系数为 \(0\). 于是

\[\sum_{l=1}^k\Big(b_l^2+2a_le_l\Big)=0,\]

故 \(b_l=0\), \(l=1\), \(2\), \(\dotsc\), \(k\).

同样的, \((1)\) 没有 \(y^2\), \(z^2\) 项, 因此 \(\sum\limits_{l=1}^kc_l^2=0\). 于是 \(c_l=d_l=0\), \(l=1\), \(2\), \(\dotsc\), \(k\).

注意 \((1)\) 中的 \(xyz\) 项的系数是 \(-4\), 故

\[2\sum_{l=1}^k\Big(b_li_l+c_lj_l+d_lh_l\Big)=-4.\]

但这是不可能的, 因  \(b_l=c_l=d_l=0\), \(l=1\), \(2\), \(\dotsc\), \(k\), 故而 \(Q(x, y, z)\) 不能写成多项式的平方和.

类似定理 2.1, 我们也可以使用定理 2.2 来直接证明 \(Q(x, y, z, w) =x^2y^2+y^2z^2+z^2x^2+w^4-4xyzw\) 不能写成多项式的平方和:

\begin{equation} Q(x, y, z, w) =\sum\Big(A_lx^2+B_lxy+C_lxz+D_ly^2+E_lxw+F_lz^2+G_lyz+H_lyw+I_lzw+J_lw^2\Big)^2.\end{equation}

比较两端 \(x^4\), \(y^4\), \(z^4\) 的系数, 得 \(A_l=D_l=F_l=0\).

比较两端 \(x^2w^2\) 的系数, 得

\[\sum\Big(2A_lJ_l+E_l^2\Big)=0.\]

故 \(E_l=0\). 类似的推理, \(H_l=I_l=0\).

此时, \((3)\) 已经是如下

\begin{equation} Q(x, y, z, w) =\sum\Big(B_lxy+C_lxz+G_lyz+J_lw^2\Big)^2.\end{equation}

比较上式两端 \(xyzw\) 的系数, 矛盾!

 Leave a Reply

(required)

(required)