Zyymat: Mathematics

Power, Simplicity and Beauty
  • Home
  • About
  • Open Problems
  • Notations
  • Resources

Hilbert’s 17th Problem 6: History

 math.NT  Add comments
Oct 202017
 

既然奇次多项式会变号, 那么设 \(d\) 次多项式 \(p\in \Bbb R[x_1, x_2,\dotsc, x_n]\) 非负, 则 \(d\) 为偶数. 我们以后只要关注偶次多项式就行了.

 Posted by zyymat at 8:20 pm  Tagged with: Hilbert, polynomial, sum of squares

 Leave a Reply Cancel reply

(required)

(required)

This site uses Akismet to reduce spam. Learn how your comment data is processed.

  Hilbert’s 17th Problem 5: Homogeneous polynomial   The first non-trivial case of a conjecture of Erdős on arithmetic progressions

Latest Posts

  • Toeplitz square peg problem hasn't been solved yet
    Toeplitz square peg problem hasn’t been solved yet
  • IMO 2019 solutions
  • About “complex analysis” by Ahlfors, Cartan and Kunihiko Kodaira
  • Maryam Mirzakhani: the first female mathematician to be awarded the prestigious fields medal prize
    Maryam Mirzakhani: the first female mathematician to be awarded the prestigious fields medal prize

Categories

  • Advance (14)
  • book reviews (50)
  • college mathematics competition (30)
  • education (36)
  • elementary mathematics (111)
    • algebra (3)
    • combinatorics (4)
    • geometry (13)
    • mathematical olympiad (62)
    • number theory (29)
  • expository (10)
  • journal (3)
  • Mathematician (49)
  • Mathematics (91)
    • math.AC (1)
    • math.AG (12)
    • math.AT (1)
    • math.CA (3)
    • math.CO (1)
    • math.CV (1)
    • math.DG (4)
    • math.FA (1)
    • math.GN (1)
    • math.GR (1)
    • math.GT (3)
    • math.HO (7)
    • math.LO (1)
    • math.NT (61)
    • math.RT (1)
  • non-technical (28)
    • advertising (3)
    • Center (1)
    • Conference (6)
    • Prize (22)
  • opinion (10)
  • software (9)
  • teaching (35)
    • abstract algebra (7)
    • complex analysis (11)
    • Differential Geometry (2)
    • General Topology (1)
    • Lie theory (1)
    • linear algebra (3)
    • mathematical analysis (4)
    • Non-Euclidean geometry (3)
    • real analysis (3)
    • Schnirelmann density (1)

Tags

Algebraic Geometry analytic number theory Annals of Mathematics arithmetic progression Beijing International Center for Mathematical Research BICMR Chow Yun-fat CMO Compass and straightedge constructions complex analysis EGA elliptic curves Fermat Fields medal Gauss Geometric Transformations geometry Germany Grothendieck Hilbert ICM IMO LaTeX Manjul Bhargava Maryam Mirzakhani MathJax number theory Paul Erdős Peking University polynomial prime prime number Quadratic Reciprocity Law Ramanujan Riemann Riemann hypothesis Romanian Master of Mathematics Shaw Prize Shing-Tung Yau Springer sum of squares TeX the Abel Prize twin prime conjecture Yitang Zhang
© 2012–2019 Zyymat Suffusion theme by Sayontan Sinha