Feb 122018
 

北京时间 2017 年 12 月 24 日上午举行的硕士研究生初试的数学分析

1. 证明如下极限:

(1)  \(\lim\limits_{n\to\infty}\Big(1+\int_0^1\dfrac{\sin^n x}{x^n}\;dx\Big)^n=+\infty\);
(2)  \(\lim\limits_{n\to\infty}\Big(\int_0^1\dfrac{\sin x^n}{x^n}\;dx\Big)^n=\prod\limits_{k=1}^{+\infty}e^{\frac{(-1)^k}{2k(2k+1)!}}\);
(3) \(\lim\limits_{n\to\infty}\dfrac1n\sum\limits_{k=1}^n\ln\Big(1+\dfrac{k^2-k}{n^2}\Big)=\ln 2-2+\dfrac\pi2\).

2. \(f\in C(0,1)\), \(\dfrac{f(x_2)-f(x_1)}{x_2-x_1}=\alpha\lt\beta=\dfrac{f(x_4)-f(x_3)}{x_4-x_3}\), 这里 \(x_1\), \(x_2\), \(x_3\), \(x_4\in(0, 1)\). 证明: 对任意 \(\lambda\in(\alpha, \beta)\), 存在 \(x_5\), \(x_6\in(0, 1)\), 使得 \(\lambda=\dfrac{f(x_6)-f(x_5)}{x_6-x_5}\).

3. 设 \(\gamma\) 是联结 \(\Bbb R^3\) 中两点 \(A\), \(B\) 的长度为 \(L\) 的光滑曲线, \(U\) 是包含 \(\gamma\) 的 \(\Bbb R^3\) 中的开集, \(f\) 在 \(U\) 中的两个偏导数存在且在 \(\gamma\) 上连续. 梯度 \(\nabla f\) 的长度在 \(\gamma\) 上的界为 \(M\). 证明:

\[|f(A)-f(B)|\leqslant ML.\]

4. \(f\) 在 \((0, 0)\) 点局部三阶连续可微, \(D_R\) 表示圆盘: \(x^2+y^2\leqslant R^2\). 计算:

\[\lim_{R\to0^+}\dfrac1{R^4}\iint_{D_R}\Big(f(x, y)-f(0, 0)\Big) dxdy.\]

 Leave a Reply

(required)

(required)