1. Let  $$f \colon\Bbb R\to \Bbb R$$ be continuous function which s.t.

$\sup_{x, y\in \Bbb R} |f(x+y)-f(x)-f(y)|<\infty$

if we have $$\lim_{n\to \infty}\frac{f(n)}n=2014$$, Prove $$\sup_{x\in \Bbb R}|f(x)-2014x|<\infty$$.

2. Let $$f_1$$, $$f_2$$, $$\dotsc$$ , $$f_n\in$$ $$H(D)\bigcap C(\bar{D})$$ , where $$D=\{z: |z|<1\}$$. Prove

$\phi(z)=|f_1(z)|+|f_2(z)|+\dotsb+|f_n(z)|$

achieve maximum value on $$\partial D$$.

3. Prove that if there is conformal mapping betwwen the annulus $$\{z:r_{1}<|z|<r_{2}\}$$ and the annulus $$\{z:\rho_1<|z|<\rho_{2}\}$$

then

$\frac{r_{2}}{r_{1}}=\frac{\rho_{2}}{\rho_{1}}$

4. 设$$U(\xi)$$ 是 $$\Bbb R$$ 是有界函数且有有限多个不连续点, 证明

$P_U(x)=\frac1\pi\int_{\Bbb R}\frac y{(x-\xi)^2+y^2}U(\xi)\,\mathrm d\xi$

$P_{U}(x)\to U(\xi), z \to \xi$

5. 海森堡不等式

$\int_{-\infty}^{+\infty}x^2|f(x)|^2\,\mathrm dx\int_{-\infty}^{+\infty}\xi ^2|\hat{f}(\xi)|^2 \,\mathrm d\xi \geq \frac{(\int_{-\infty}^{+\infty}|f(x)|^2\,\mathrm dx)^2}{16\pi^2}$

1.  Let  $$X$$ be the quotient space of $$S^2$$ under the identifications $$x \sim -x$$ for $$x$$  in the equator $$S^{1}$$. Cmpute the homology groups $$H_{n}(X)$$. Do the same for $$S^{3}$$ with antipodal points of the equator $$S^{2} \subset S^{3}$$ identified.

2.  Let $$M \to \Bbb R^3$$  be a graph defined by $$z=f(u,v)$$ where $$\{u,v,z\}$$ is a Descartes coordinate system in $$\Bbb R^3$$. Suppose that $$M$$ is a minimal surface.

Prove that:

(a) The Guass curvature $$K$$ of $$M$$ can be expressed as

$K=\Delta \log (1+\frac1W),W:=\sqrt{1+(\frac{\partial f}{\partial u})^{2}+(\frac{\partial f}{\partial v})^{2}}$

(b) If $$f$$ is defined on the whole $$uv$$-plane, then $$f$$ is a linear function. (Bernstein theorem)

3.  Let $$M=\Bbb R^2 / \Bbb Z^2$$ be the two dimensional torus, $$L$$ the line $$3x=7y$$ in $$\Bbb R^2$$, and $$S=\pi (L) \subset M$$ where $$\pi :\Bbb R^2 \to M$$ is the projection map. Find a differential form on $$M$$ which represents the Poincare dual of $$S$$.

4. Let $$(\tilde M,\tilde g) \to (M,g)$$ be a Riemannian submersion. This is a submersion $$p: M \to M$$ such that for each $$x\in \tilde{M}, \ker^{\bot}(Dp) \to T_{p(x)}(M)$$  is a Linear isometry.

(a) Show that p shortens distance.
(b) If $$(\tilde{M},\tilde{g})$$ is complete, so is $$(M,g)$$.
(c) Show by example that if $$(M,g)$$ is complete, $$(\tilde{M},\tilde{g})$$ may not be complete.

5. Let $$\psi :M \to \Bbb R^3$$ be an isometric immersion of a compact surface $$M$$ into $$\Bbb R^3$$.

Prove that

$\int_MH^2 \,\mathrm d\sigma \geq 4\pi$

where $$H$$ is the mean curvature of $$M$$ and $$d\sigma$$ is the area element of $$M$$.

6. The unit tangent bundle of $$S^2$$ is the subset

$T^1(S^2)=\{(p,v)\in \Bbb R^2\, | \, \|p\|=1, (p,v)=0,\|v\|=1\}$

Show that it is a smooth submanifold of the tangent bundle $$T(S^2)$$ of  $$S^2$$ and $$T^1(S^2)$$ is diffeomorphic to $$\Bbb RP^3$$.

Analysis and differential equations Individual 2014

Geometry and topology Individual 2014

Algebra and number theory Individual 2014

Probability and statistics Individual 2014

Applied Math. and Computational Math. Individual 2014

team 2014

### One Response to “S.T. Yau College Student Mathematics Contests 2014”

1. 非常好的资源

This site uses Akismet to reduce spam. Learn how your comment data is processed.