Aug 232013
 

8 月 22 日上午 9:00, 张益唐在中科院数学与系统科学研究院(Academy of Mathematics and Systems Science (AMSS) in the Chinese Academy of Sciences (CAS)) 做了题为 “Prime gaps and related problems” 的讲座, 这是今年中科院的华罗庚数学讲座(Loo-Keng Hua Distinguished Lecture).

报告会由王元主持. 这里是全程视频:

 

张益唐从 Hardy-Littlewood’s prime tuples conjecture 开始, 接着讲到了 Goldston, János Pintz, Cem Yıldırım 的工作, 然后才是他自己的突破. 张益唐说, 他的论文的第 5 页, 把证明的思路交待的很清楚了.

张寿武, 林群坐在下面, 田野应该也在. 复旦的一些老师也赶过来了, 朱晨畅(95 IMO 满分) 也在. 季理真在报告会开始, 拍了几张照片.

Yitang zhang's Loo-Keng Hua distinguished lecture at CAS 1

Yitang zhang’s Loo-Keng Hua distinguished lecture at CAS 1

Yitang zhang's Loo-Keng Hua distinguished lecture at CAS 2

Yitang zhang’s Loo-Keng Hua distinguished lecture at CAS 2

活动最后, 王元代表华罗庚讲座, 赠送给张益唐一个纪念品

Yitang zhang received Loo-Keng Hua souvenir from Yuan Wang

Yitang zhang received Loo-Keng Hua souvenir from Yuan Wang

Aug 062013
 

质数 \(k\)-tuples 猜想和 \(\pi(m+n)\leqslant\pi(m)+\pi(n)\) 是 Hardy 和 Littlewood 提出的两个关于质数分布的猜测. 习惯上, 人们也把前一个猜想称为第一 Hardy-Littlewood 猜想(Prime \(k\)-tuple), 后一个称为第二 Hardy-Littlewood 猜想(Second Hardy–Littlewood conjecture). 这两个猜想都还没有解决, 但数学家们倾向于认为质数 \(k\)-tuples 猜想是正确的, 并且存在无穷多组正整数 \(m,n\), 使得 \(\pi(m+n)\gt\pi(m)+\pi(n)\).

质数 \(k\)-tuples 猜想

整数 \(k_0\geqslant1\), \(k_0\)-tuples

\[\mathcal H=(h_1,h_2,\dotsc,h_{k_0}),\]

这里 \(h_1,h_2,\dotsc,h_{k_0}\) 是 \(k_0\) 个互不相同的整数, 并且 \(h_1\lt h_2\lt \dotsb\lt h_{k_0}\). 那么, 是否存在无穷多个 \(n\), 使得 \(n+\mathcal H=(n+h_1,n+h_2,\dotsc,n+h_{k_0})\) 全部由质数组成? \(k_0=1\) 就是质数的无限性. 至于 \(k_0=2\), 就很困难了, \(\mathcal H=(0,2)\) 即为当前搅翻数学界的孪生质数猜想.

显然的, 不能指望对于任意的 \(\mathcal H\), 都有这么好的结果. 就拿 \(\mathcal H=(0,1)\) 来说, 每个 \(n+\mathcal H=(n,n+1)\) 由两个相邻的整数组成, 只有 \((2,3)\) 包含两个质数. 一般来说, 如果存在质数 \(p\), 使得可以从 \(\mathcal H\) 中选出 \(p\) 个数作为 \(\bmod  p\) 的完系, 那么对于任意的正整数 \(n\), \(n+\mathcal H\) 至少包含一个 \(p\) 的倍数. 于是, 只可能有有限个 \(n\), 使得 \(n+\mathcal H\) 全部由质数组成.

于此, 我们必须对 \(\mathcal H\) 添加一些限制条件, 来避免这种情况. \(k_0\)-tuples \(\mathcal H\) 称为允许的(admissible), 如果对于任意质数 \(p\), 总存在 \(\bmod  p\) 的至少一个剩余类, 使得 \(\mathcal H\) 不包括这剩余类的任何数. 作为例子, \((0,2), (0,2,6)\) 都是允许的, 但 \(0,2,4\) 不被允许, 因为 \(0,2,4\) 是 \(\bmod  3\) 的完系.

现在, 我们可以正式的把 Hardy-Littlewood 质数 tuples 猜想陈述如下:

Hardy-Littlewood prime tuples conjecture  如果 \(k_0\)-tuples \(\mathcal H\) 是允许的, 那么, 存在无穷多个正整数 \(n\), 使得 \(n+\mathcal H\) 全部由质数组成.

这个猜想太困难了. 实际上, 数学家还没有找到任何一个允许的 \(k_0\)-tuples \(\mathcal H\)\((k_0\geqslant2)\), 来证明这猜想是成立的. 仅仅是前不久, 张益唐的工作的横空出世, 我们才得知, 存在一个正整数 \(h\), 满足 \(0\lt h\lt 70,000,000\), 使得这猜想对于 \((0,h)\) 是成立的. 虽然, Tao(陶哲轩), Ben Green 等人接下来的工作, 已经把 \(70,000,000\) 大大降低, 目前是 \(5414\), 但我们仍然不清楚 \(h\) 到底是多少.

Second Hardy–Littlewood conjecture

1923 年, Hardy 和 Littlewood 发表了一篇论文[1]. 这篇长达 \(70\) 页, 已经是数论史上的经典, 的论文提出, 对任意整数 \(m,n\geqslant2\),

\[\pi(m+n)\leqslant\pi(m)+\pi(n).\]

这猜想, 如今被冠名为第二 Hardy–Littlewood 猜想.

质数 tuples 猜想与第二 Hardy–Littlewood 猜想不能同时成立

1974 年, Ian Richards 和他的博士研究生 Douglas Hensley 指出[2], Hardy-Littlewood 的两个猜想, 是不相容的. 也就是说, 这两个猜想, 至少有一个是不成立的.

张益唐的工作与此有关. Engelsma 指出, 如果质数 tuples 猜想为真, 那么, 存在无穷多个正整数 \(n\), 使得

\[\pi(n+3159)-\pi(n)=447\gt\pi(3159)=446.\]

Annotations

  1. 第一部分, 对于质数 tuples 猜想的介绍, 参考了 Tao 的一篇 blog.

References

  1. G. H. Hardy and J. E. Littlewood, On some problems of “partitio numerorum III: On the expression of a number as a sum of primes. Acta Math, 1923, 44: 1–70.
  2. D. Hensley and I. Richards, Primes in intervals. Acta Arith. 25 (1974), pp. 375-391.
  3. conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem. Bulletin of the American Mathematical Society 80:3 (1974), pp. 419-438.
Jul 052013
 

单墫的数论书 “趣味数论” 是一本不错的数论入门书. 这是我看过的第一本完全的数论书籍.

阅读本书不需要多少准备知识, 初中毕业生基本没有什么困难. 当然, 一个爱思考的大脑, 对数学的热爱, 一支铅笔一张纸肯定是不能缺少的!

对数学竞赛来说, 需要的数论知识点, 这书都有, 除了不是必须的二次剩余. 这书有不少堆垒数论的问题. 除此之外, 第七章是丢番图逼近的简单介绍, 第九章, 第十章可以看作解析数论, 代数数论的最简单入门. 这些数论分支, 继续深入, 都有很多好的文献.

单墫的的书, 有一些共同的特征: 问题多, 定理少! 这在本书也得到完整的体现.

本书最早由中国青年出版社出版, 是绿色封皮. 最新的第二版, 是华东师大出版社推出. 新版, 相较前版, 仅仅只有最后一节, 修订交待了 Wiles 证明了Fermat 大定理.

下面是对本书的一些补充材料:

1.21 唯一因式分解定理的证明

本书给出的是最流行的办法.  Hardy 的名作 [2] 用最小数原理给出了另外一个证明.

2.5  五边形与五角数

一般, 第 \(k\) 个 \(m+2(m\geqslant1)\) 角数记为
\[p_m(k)=\dfrac{mk(k-1)}2+k.\]

2.8  一个不平凡的结论

这个结论是 Euler 的.  可在 [3] 的最后一章找到一个证明.

2.9 什么数恰好有 \(60\) 个因数?

最后给出的答案, 遗漏了一种情况: \(p^{59}\).

\(kn = x^2+y^2+1\)

\(n\) is a odd number, then there exists positive integer \(k\gt0\) such that \(kn = x^2+y^2+1\) for some integers \(x,y\).

with use of the Chinese remainder theorem we have to solve this problem only for power of primes:

suppose that \( n=p_1^{a_1}p_2^{a_2}\dotsm p_k^{a_k}\), then we know that for each \(i\), there exist \( x_i, y_i\) such that \( p_i^{a_i}\) divides  \( x_i^2+y_i^2+1\). Now consider these equations:

\[ X\equiv x_i\pmod {p_i^{a_i}}, i= 1,2,\dotsc,k.\]

these equations have solution because of  Chinese remainder theorem.

similarly these equation have solution:

\[  Y\equiv y_i\pmod {p_i^{a_i}}, i= 1,2,\dotsc,k.\]

now \(n\) divides  \( X^2+Y^2+1.\)

then we can apply hansel’s lemma. Actually we want to show that if for some \( \alpha \), there exist \(x,y\) such that \( p^\alpha\) divides  \( x^2+y^2+1\), then for  \( \alpha +1\) such \(x\)  and \(y\) exist. For this because in case \( \alpha \), \( p\) cannot divide both \(x\)  and \(y\), then we can use hansel for improve \( \alpha \) to \( \alpha+1.\)

References

  1. 华罗庚, 数论导引.
  2. Hardy, An introducton to the theory of numbers. 有中文本
  3. Tom M. Apostol, Introduction to analytic number therory. 有中文本
May 142013
 

On 14 May 2013, Mathematician Yitang Zhang claimed that he has proved there are infinitely many prime gaps shorter than 70 million, which was a weak version of the twin prime conjecture.

数学界对张的证明, 表示乐观, 应该没有错误.

[Update, May 21, 2013: 张的论文, 全文 \(56\) 页已经可以在 Annals of Mathematics 的网站看到: Bounded gaps between primes(subscription required). 这文章的主要结果是证明了

\[\varliminf_{n\rightarrow\infty}(p_{n+1}-p_n)\lt7\times10^7,\]

这里 \(p_n\) 表示第 \(n\) 个质数.]

综合起来, 这故事有几个看点:

1. 成就太过突出
孪生质数猜想是数论中最古老的难题, 一直没有啥进展.

2. 用经典方法逆袭, 用弹弓打死了狗熊.
无数数学家企图使用弹弓打狗熊, 从没成功. 都已经放弃希望了, 突然有人宣布搞定. 不是崭新的思路, 这是很多数学家引以为憾的地方, 因此引来无数的酸葡萄, 大家都希望使用核武器来进攻, 甚至发明更猛的新式武器.

3.张益唐一直坎坷, 一举成名天下知.
很精彩的励志故事. 很可能将来的数论教科书在讲述他惊世骇俗的定理时, 也会用他送外卖糊口来思考数学的情事来鼓励后进.

石破天惊

4 月 17 日, 数学界最富盛名的数学杂志 Annals of Mathematics 的收件箱出现一篇论文. 这论文居然宣称在一个最古老的数学难题孪生质数猜想上取得重大突破. 专家们对作者张益唐感到陌生. 最要命的是, 张其实只是一所普通大学的讲师, 已经 50 好几.

著名数学杂志经常收到一些出自无名作者的号称解决了大问题的论文, 但这篇署名张益唐的数论论文不同. 这是一部严肃的作品: 论述清澈, 完全使用这学科当前的术语进行表述. 于是, 编辑们决定尽快审稿.

过了三个星期, 是的, 仅仅三周, 张就收到了对论文的评价: 一流!

一个没啥名气的研究人员取得重大进展的新闻, 迅速在数学界传开. 丘成桐邀请张益唐去 Harvard 做一个报告. 报告会于 5 月 13 日进行. 坐在教室的观众有 50 人, 没人之前听说过张的大名, 包括丘.(其实, 在1980年代, 张还在求学的时候, 与丘是打过交道的.) 于是,  张益唐的工作的一些细节为外界所知晓: 张没有使用崭新的办法, 而是通过改进已有的途径. 最顶尖的数论专家已经尝试过这种途径, 但张益唐在别人失败的地方取得了成功.

张益唐的定理令人惊讶, 是一个巨大的突破.

筛法

张益唐的成果可以追溯到八年前的一篇数论专家引用称为GPY的论文-以其三位作者 Goldston, János Pintz, Cem Yıldırım 的名字命名. 该论文已经非常非常接近, 但很遗憾的没能证明存在无限多对质数, 其差有限.  具体说来, GPY发展了一种称为筛法的方法. 研究人员把这种筛法与一个函数结合起来. 这个函数的效能是基于一个衡量质数多快才能呈现某种规律的称为 level of distribution 参数.  level of distribution 至少是\(\frac12\), 这就是得到 GPY 的结果的那个值. GPY的筛法要想得出存在无限多对质数, 其间隙有限, 必须提升 level of distribution, 使其 \(>\frac12\), 哪怕只比 \(\frac12\) 大那么一点点也足够了.

1980 年代后期, IAS 的 Fields Medal 得主 Enrico Bombieri, Toronto大学的 John Friedlander, 和 Rutgers大学的 Henryk Iwaniec 设法修改level of distribution 的定义, 使得这个修订后的参数达到 \(\frac47\). GPY 的文章在 2005年出笼以后, 研究人员一窝蜂想把这个修改后的 level of distribution 与 GPY的筛法组合起来, 但没有什么成效.

张益唐的工作

与此同时, 张益唐独自游走在 GPY 与质数的有界间隙之间, 想要完成 GPY 未尽的事业.

张读过 GPY 这论文. 论文里有一句话是如此振奋人心. 这句话指出, 质数间隙有界已经近在咫尺! 经过三年孤独的奋斗, 张没有任何进展.

想进行一点休息, 张益唐去年夏天访问了一个在 Colorado 的朋友. 就在这期间,  7 月 3 日,  在离开朋友家去一个音乐会之前, 在后院休息的半小时里, 张益唐突然想出了答案. 张的想法, 不是直接使用Selberg 的筛法, 而是做一些修正: 不是使用所有的数来过滤, 只考虑那些没有大的质数因子的数.

Goldston认为, 张的筛法, 没有那么强大, 效果也差一点, 但在 GPY 会有一点奇效. 这样一来, 张把 level of distribution 提高到了 \(\frac12+\frac1{584}\), 这足以使用 Bombieri, Friedlander, 和 Iwaniec 的方法. “新筛法得出了张的惊天动地的结果, 但不太可能证明孪生质数猜想. 即便假定 level of distribution 最好的结果成立, 从 GPY 的方法只能得出有无穷多对质数, 其差不超过 \(16\).” Goldston 说.

张也使用了 Enrico Bombieri, John Friedlander, 和 Henryk Iwaniec 所发展的技巧, 比如有限域上的特征和, 自守形式的理论, 然后独创性的把所有东西结合在一起.  他也优雅的借用其他领域的工具, 比如间接用到有限域上代数簇的 Riemann hypothesis.

张益唐花费了几个月才完成所有的细节. 最后的论文表述清晰. 这是解析数论的巅峰之作.

[Update, June 8, 2013: 去年7月3日, 张益唐前往在科罗拉多州立大学音乐系任教的好友, 音乐指挥家齐雅格家中作客. 当时他与齐雅格正准备离家去看排练, 临走前20分钟, 张益唐想到齐家院子后看不请自来的梅花鹿, 顺便抽根烟.

Yitang Zhang

Yitang Zhang

齐雅格回忆, 张益唐破解孪生素数的关键就是在那20分钟里,”有如神明启示一般地”想出来. 他那次到他家作客, 纯粹为了放松, “身上没带一本书,没有任何资料,也不上电脑.这似乎是个奇迹”.

张益唐则表示, 这是长期研究的积累, 一旦有机遇, 就成功地突破难题, 找到別人没有想到的特別突破口, “这也是运气”.[9]  ]

张益唐其人

张益唐, 北大 78 级, 本科学习的是计算数学. 1982年毕业之后, 拜潘承彪教授为师继续在北大学习三年, 获得硕士学位. 然后, 他赴美,  到 Purdue University攻读博士学位, 导师是莫宗坚教授. 莫宗坚的大名很多人应该是知道的, 这要归功于他的两本”代数学”.

学术界也讲究”血统”! 张益唐可算得上是华罗庚的”徒孙”. 张的硕士导师潘承彪尽管不是华罗庚正式的学生, 但显然受到华巨大的影响. 潘承彪曾追随闵嗣鹤教授学习广义解析函数, 但他的数论知识应该主要来自他的哥哥潘承洞. 潘承洞是闵嗣鹤的研究生, 但也被认为是华罗庚的学生, 尤其在对Goldbach猜想的研究上. 更不待言闵嗣鹤教授本人也被华深深影响. [1]

张益唐的博士题目是 Jacobian conjecture. 其实这 Jacobian conjecture 现在仍在考验人类的智慧. 张在博士毕业之前, 认为自己解决了 Jacobian conjecture. 但是, 他的证明使用的其导师莫宗坚的一个引理后来被发现是错的, 于是张几年的心血付之东流. 张益唐这博士论文没发表, 而且和导师莫宗坚的关系不好, 于是博士毕业即为失业, 连博士后都没找到.[2]

接下来的事情, 很多新闻都有报道: 张一边做零工糊口, 一边思考数学! 最后, 在他的两个师弟, 北大80级的同学唐朴祁, 尤其是葛力明的帮助下, 在一个偏僻的地方, University of New Hampshire, 找到一个讲师职位. 这样张益唐才算有了稳定的工作, 能在更好的条件下思考质数分布的规律.

张益唐在大学教书, 一周上课六个小时, 空余时间不少. 虽然学校並不重视研究, 但自己始终没有放弃思考和钻研自己热爱的数学数论问题. 在这三, 四年的过程中, 遇到许多令人沮丧的挫折.

张益唐不重视金钱和名利, 几乎任何时间都在思考数学, 甚至休息的时候. 这也部分回答了为什么他能成功. 用他自己的话来说,”The idea is based on an accumulation of my thinking for several years,I had tried various methods. To answer why others could not get it and I could, I may say that I had been working harder and never gave up.” [10]

闲暇之际, 张喜爱阅读莎士比亚(Shakespeare), 哈姆雷特, 罗密欧与朱丽叶(Hamlet and Romeo and Juliet) 是他的最爱.[8]

张益唐的学生对他评价很好, 字写的很漂亮.

他太太在 California 工作, 两人没有孩子.[5]

References

  1. 季理真, 素数不再孤单: 孪生素数和一个执着的数学家张益唐, May 20, 2013.
  2. 汤涛, 张益唐和北大数学 78 级, May 19, 2013.
  3. Erica Klarreich, Unheralded Mathematician Bridges the Prime Gap, simons foundation, May 19, 2013.
  4. Kenneth Chang, Solving a Riddle of Primes, The New Yorks Times, May 20, 2013.
  5. Carolyn Y. Johnson, Globe Staff, Obscure University of New Hampshire math professor takes major step toward elusive proof, May 23,2013.
  6. Dan Goldston, Zhang’s Theorem on Bounded Gaps Between Primes.
  7. Henryk  Iwaniec, a email to Shing-Tung Yau: Subject: Re: Yitang zhang, May 24,2013.
  8. Liam O’brien, That figures: Professor who had to work at Subway dazzles world of maths after solving centuries-old prime number riddle, May 21, 2013
  9. 唐嘉丽, 张益唐破解千古数学难题, June 6, 2013.
  10. Paul Feely, UNH professor solves ancient mathematics riddle, June 2, 2013.