真心佩服 Springer! 出版的好书无数: 无数的系列, 每个系列都是几十, 几百. 很多的资讯都很独家, 极具价值!
代数几何最”浅”的书, 大概是 Vladimir I. Arnold 的 “Real Algebraic Geometry“! Springer 刚刚出来英译本. 六章加一个附录, 刚好 100 页! 本书是面向高中生的讲座. 不过, 不懂一点拓扑学, 微积分, 射影几何, 是不可能完全看懂的!
虽然代数几何有不同的切入路径, 但是想入门代数几何, 最起码要在掌握基本的抽象代数之后, 最好能有较强的射影几何(Projective Geometry)基础.
不建议 David Cox, John Little, Donal O’Shea, Ideals, Varieties, and Algorithms, 以及 Harris, Algebraic Geometry: A First Course. 从这样的书, 不会学到多少东西, 尽管这些书都很容易读, 要求的预备知识也很少.
根据很多人的看法, Bertrametti, Carletti, Gallarati, Bragadin, Lectures on Curves, Surfaces and Projective Varieties 很精彩.
1. Daniel Bump, Algebraic Geometry.
The prerequisites for the textbook are fairly minimal. Although it does discuss commutative algebra, there is a flavor of geometry pervasive throughout the entire text.
2. Holme, A Royal Road to Algebraic Geometry.
3. Shafarevich, Basic Algebraic Geometry, vol. 1, 2
英文译本第三版, 出来没多久.
4. Perrin Algebraic Geometry an Introduction.
5. Miles Reid, undergraduate algebraic geometry.