INDIVIDUAL TEST S.-T YAU COLLEGE MATH CONTESTS 2012

Geometry and Topology

Please solve 5 out of the following 6 problems, or highest scores of 5 problems will be counted.

1. Show that $\pi_3(S^2) \neq 0$.

2. Let M be a smooth manifold of dimension n, and X_1, \dots, X_k be k everywhere linearly independent smooth vector fields on an open set $U \subset M$ satisfying that $[X_i, X_j] = 0$ for $1 \leq i, j \leq k$. Prove that for any point $p \in U$ there is a coordinate chart (V, y^i) with $p \in V \subseteq U$ and coordinates $\{y^1, \dots, y^n\}$ such that $X_i = \frac{\partial}{\partial y^i}$ on V for each $1 \leq i \leq k$.

3. Show that any self homeomorphism of \mathbb{CP}^2 is orientation preserving.

4. Prove the following version of the isoperimetric inequality: Suppose C is a simple (that is, without self-intersection), smooth, closed curve in the Euclidean plane, with length L. Show that the area enclosed by C is less than or equal to $\frac{L^2}{4\pi}$, and the equality occurs when and only when C is a round circle.

5. Let $x:M\to\mathbb{R}^3$ be a closed surface in 3-dimensional Euclidean space. Its Gaussian curvature and mean curvature are denoted by K and H respectively. Prove that:

$$\iint\limits_{M} H dA + \iint\limits_{M} pK dA = 0, \quad \iint\limits_{M} pH dA + \iint\limits_{M} dA = 0,$$

where $p = \vec{x} \cdot \vec{n}$ is the support function of M, \vec{x} denotes the position vector of M, \vec{n} denotes the unit normal to M, and dA is the area element of M.

6. Write the structure equation of an orthonormal frame on a Riemannian manifold. Prove the following Riemannian metric g has constant sectional curvature c using the structure equation:

$$g = \frac{\sum_{i=1}^{n} (dx^{i})^{2}}{\left[1 + \frac{c}{4} \sum_{i=1}^{n} (x^{i})^{2}\right]^{2}}$$

where (x^1, \ldots, x^n) is a local coordinate system.