S.-T. Yau College Student Mathematics Contests 2013

Geometry and Topology Individual

Please solve 5 out of the following 6 problems.

- 1. Find the homology and fundamental group of the space $X = S^1 \times S^1/\{p,q\}$ obtained from the torus by identifying two distinct points p,q to one point.
- **2.** Suppose (X, d) is a compact metric space and $f: X \to X$ is a map so that d(f(x), f(y)) = d(x, y) for all $x, y \in X$. Show that f is an onto map.
- **3.** Let M^2 be a complete regular surface and K be the Gaussian curvature. Suppose $\sigma:[0,\infty)\to M$ is a geodesic such that $K(\sigma(t))\leq f(t)$, where f is a differentiable function on $[0,\infty)$. Prove that any solution u(t) of the equation

$$u''(t) + f(t)u(t) = 0$$

has a zero on $[0, t_0]$, where $\sigma(t_0)$ is the first conjugate point to $\sigma(0)$ along σ .

- **4.** Let g_1 , g_2 be Riemannian metrics on a differentiable manifold M, and denote by R_1 and R_2 their respective Riemannian curvature tensor. Suppose that $R_1(X,Y,Y,X) = R_2(X,Y,Y,X)$ holds for any tangent vectors $X, Y \in T_pM$. Show that $R_1(X,Y,Z,W) = R_2(X,Y,Z,W)$ for any $X, Y, Z, W \in T_pM$.
- **5.** Let M^n be an even dimensional, orientable Riemannian manifold with positive sectional curvature. Let $\sigma:[0,l]\to M$ be a closed geodesic, namely, σ is a geodesic with $\sigma(0)=\sigma(l)$ and $\sigma'(0)=\sigma'(l)$. Show that there exist an $\epsilon>0$ and a smooth map $F:[0,l]\times(-\epsilon,\epsilon)\to M$, such that $F(t,0)=\sigma(t)$, and for any fixed $s\neq 0$ in $(-\epsilon,\epsilon)$, $\sigma_s(t)=F(t,s)$ is a closed smooth curve with length less than that of σ .
- **6.** Let (M^2, ds^2) be a minimal surface in \mathbb{R}^3 , where ds^2 is the restriction of the Euclidean metric. Assume that the Gaussian curvature K of (M^2, ds^2) is negative. Denote by \widetilde{K} the Gaussian curvature of the metric $ds^2 = -Kds^2$. Show that $\widetilde{K} = 1$.