37th International Mathematical Olympiad

Solutions

Problem 1
We shall work on the array A of lattice points defined by

A={(,7)€Z?:0<i<19,0<j <11}

Our task is to move from (0,0) to (19,0) via the points of A such that each move
has length \/r. Thus for each move of the form (z,y) — (z + a,y + b), we must
have a? + 6% = r.

(a) If r is even, then for each solution (a,b) of a* +b* = r, the sum a + b is even,
so for each lattice point (x,y) reached from (0,0), the parity of @ 4+ y must be the
same as that of 0 + 0; that is,  + y must be even. It follows that (19,0) cannot
be reached from (0,0).

If  is a multiple of 3, then for each solution (a,b) of a? + b* = r, both a and b
must be multiples of 3; this holds because —1 is not a square modulo 3. Thus for
each lattice point (z,y) reached from (0,0),  and y must both be multiples of 3,
and so in this case too (19,0) cannot be reached from (0,0).

(b) Consider the case r = 73 = 8% 4 3%, Let a,b, c and d represent, respectively,
the number of moves of the types +(8,3), +(8,—3), £(3,8) and £(3,—8). (More
precisely, a is the number of moves of type (8,3) minus the number of moves of
type (=8, —3); similarly for the others.) Since we have to reach (19,0) from (0,0),
we have

8(a+b)+3(c+d) =19, 3(a—b)+8(c—d)=0.

Taking (a + b,c+ d) = (2,1) as a trial solution of the first equation, and (a —
b,c —d) = (—8,3) as a trial solution of the second, we find that

a=-3b=5c=2d=—-1.

We now attempt a solution with three moves of type (—8, —3), five moves of type
(8, —3), two moves of type (3,8) and one of type (—3,8). The constraint is that
we must keep within the boundaries of the array. After some experimentation,
the following route emerges:

(0,0) — (8,3) — (1L.5) — (19,2) — (16,10) — (8,7) — (0,4) — (8,1) —
(11,9) — (3,6) — (11,3) — (19,0).

Note that the solution (¢ +b,c¢+d) = (2,1),(a —b,c— d) = (8,—3), which gives
a=>5>b=3,¢c=1and d = 2, also yields a route:



,0) — (8,3) — (16,6) — (8,9) — (5,1) — (13,4) — (5,7) — (13,10) —
6,2) — (8,5) — (16,8) — (19,0).
)

97 = 92 + 42, each of the moves must consist of one of the vectors (49, +4),

(0
(1
(c) If » = 97, then since the only way of writing 97 as the sum of two squares
is
(+4,+£9). Let the points of A be partitioned as BUC in the collowing manner:

B={(,j)€Z*:0<i<19,4<;<7}, C=A\B.

Then it can be verified that moves of the type (£9,+4) always take us from
points in B to points in C and wvice versa, while moves of type (+4,49) always
take us from points in C to points in C. (Note that it is not possible to go from
one point in B to another point in B in one step.)

Each move of the type (£9,+4) changes the parity of the a-coordinate, so since
we have to go from (0,0) to (19,0), and odd number of such moves is required.
Each such move takes us from B to C or vice versa, so since the starting point
(0,0) is in C, we shall end up at a point in B. However, (19,0) € C. It follows
that the required sequence of moves does not exist.

Problem 2

Lemma: Let the feet of the perpendiculars from P to BC, CA and AB be X, Y
and Z respectively. Then (i) YZ = PAsin A (ii) angleY X7 = LBPC — LA.

This is easy to see via an examination of the three cyclic quadrilaterals AZ PY,

BXPZ and CYPX.

Let BD and C'E meet AP in () and R respectively. By the angle bisector theorem,
AQ/QP = AB/BP and AR/RC = AC/CP. To show that @, R coincide, it
suffices to show that AB/BP = AC/CP. Now,

AB—£ <— AB-CP=AC-BP <— (CP-sinC =BP-sinB

BP (P
< XY =X7 (usingthe Lemma).

But we are given that ZAPB — /C = LAPC — /B. This implies that /XZY =
(XY 7 (also by the Lemma), so XY = X7 as desired.

Problem 3
Putting m = n = 0 we obtain f(0) = 0 and hence f(f(n)) = f(n) for all n € Nj.

Thus the given functional equation is equivalent to

Flm+ F(n) = J(m) + J(n),  [(0) =0,



We also observe that if f(x) is not the zero function then f has non-zero fixed
points. Let a be the least non-zero fixed point of f. If a = 1 then it is easy to
check that f(2) =2 and by induction that f(n) =n for all n € Ny,.

Suppose a > 0. Again by induction f(ka) = ka for all & > 1. We shall show that
the fixed points of f are all of the form ka for some & > 1. First note that the
sum of two fixed points of f is itself a fixed point. Let b be an arbitrary fixed
point of f. Choose non-negative integers ¢,r such that b = ag+r,0 < r < a.
Then we get

b= f(b) = flag+r) = f(r+ flaq)) = f(r) + f(aq) = f(r) + aq.

It follows that f(r) = r and since r < a we must have r = 0. This proves the
claim that the fixed points are all of the form ka. Since the set {f(n):n € Ny}
is a set of fixed points of f it follows in particular that f(i) = an; for each i < a,
with ng = 0 and n; € Ng.

Take any positive integer n and write it as n = ka + ¢ where 0 <1 < a. Using
the functional equation we obtain

fn)=fli+ka)=fi+ f(ka)) = f(i) + ka = na + ka = (n; + k)a.

We verity that such an f satisfies the given functional equation: take m = ka +
t,n=1la+3,0<1,5 <a. Then

fim+ f(n)) = f(ka+i+ f(la+j)) = f((k+1+nj)a+1)
= (k+{+n;+n)a
= [(m)+(n)

Thus if f is not identically zero, then f has the following general form: let « € N
and nq,ny,...,n,_1 € Ng be chosen arbitrarily; then

=[] e

Problem 4
Let 15a + 16b = r?,16a — 15b = s?, where r, s € N. We now obtain:

rt + st = (15 +16%)(a® + b%) = 481(a* + b%).

Note that 481 = 13 x 37. We now use the fact that —1 is not a fourth power either
modulo 13 or modulo 37. (To see why this holds, note that the congurence —1 =
z* (mod 13) for some x € N leads via Fermat’s theorem, to (—1)* = 1 (mod 13),

3



which is false; likewise, the congurence —1 = a* (mod 37) for some z € N leads

to (—1)? =1 (mod 37), which too is false.)
Since r* + s* = 0 (mod 13), either r = s = 0 (mod 13) or r #Z 0,s # 0 (both

modulo 13). The latter possibility cannot occur because —1 is not a fourth power
modulo 13; therefore r = s = 0 (mod 13), and similarly r = s = 0 (mod 37).
Therefore r and s are both multiples of 481, and so r > 481,s > 481. It is easy
to chech that r = s = 481 is realizable: we obtain

a=481-31, b=481.
Thus the required answer is 4812.

Problem 5

Let a,b,¢,d, e and f denote the lengths of the sides AB, BC, DE, EF and F A
respectively. Note that the opposite angles of the hexagon are equal (LA = /D,
LB = LE, [C = [LF). Draw perpendiculars as follows: AP L BC, AS L EF,
D@ L EF. Then PQRS is a rectangle and BF > PS = (QR. Therefore 2BF >
PS4+ QR, and so

2BF > (asin B+ fsinC) + (esinC + dsin B).
Similarly,

2DB > (¢sin A+ bsin B) + (esin B 4 fsin A),

2FD > (esinC + dsin A) + (asin A + bsin C).
Next, the circumradii of the triangles FAB, BC'D and DEF' are related to BF,
DB and F'D as follows:

BF DB FD
- 2sin A’ fio = ZSinC7quadRE - 2sin B’

We obtain, therefore,

R4

sin B  sinA sin B sin(C
>
ABa+ Fo + Hp) 2 a(sinA+sinB) b(sin0+sinB)+

ge 2(a+b+---)=2P,

and so R4 + Rp + Rc > P/2, as required. Equality holds iff /A = /B = /C and
BF 1 BC,... that is, iff the hexagon is regular.



Problem 6

We first remark that there is no loss in taking p and ¢ to be coprime; for, if p, g
have a common factor d > 1, then we can reword the problem in terms of the
quantities p’' = p/d, ¢’ = q/d, ¥\ = x;/d.

Let there be k indices ¢ € {1,2,...,n} such that ;—z;_; = p; then the number of
indicesi € {1,2,...,n} such that ;—x,_y = —¢is n—k. Since x,, = ¢ = 0, we see
that kp = (n—k)q, and since p, ¢ are coprime this implies that k = ag,n—k = ap
for some positive integer a. It follows that n = a(p + ¢), and since n > p + ¢, we
have a > 1.

Let y; = @iqgppq — @; for ¢ € {0,1,...,n — p — ¢}. Since n > p + ¢, there is more
than one y;. We shal show that at least one of the y; is 0, which will establish the
stated claim. (In fact, this establishes a stronger statement.)

For each 1, let S; denote the set of indices {i+1,i+2,...,i+p+q}. Let r be the
number of j € 5; for which z; — ;1 = p; then the number of ;7 € 5; for which
rj—xj_1 = —qis p+ g — r. Summing these equalities over all j € S;, we obtain

yi=rp—(p+qg—r)g=(p+q(r—q.
Thus y; is a multiple of (p+ ¢) for each i. Now consider the expression y;11 — y;:
Yir1 — Y = (Tirprgrs — Tiy1) — (Tigprg — i)
= (Tigpratt = Titptq) — (Tiy1 — i)
Since each bracketed term is p or —q, it follows that y;41 — y; is 0 or pm(p + q).

Next, consider the relation:

Yo T Yptg T Y2(ptq) T " T Yn—p—gq = 0.

This shows that the y;’s are neither all positive or all negative. Thus in the
sequence

Yo, Y1, Y25 - - s Yn—p—q—15 Yn—p—q>
there exists two adjacent y’s that are not of the same sign. Since each y; is a

multiple of (p + ¢), and since the difference between adjacent y;’s is always 0 or
+(p + q), it follows that some y; equals 0.



