Problem 1. Let G be a finite subgroup of $\text{GL}(V)$ where V is an n-dimensional complex vector space.

(a) (5 points) Let $H = \{h \in G : hv = \eta(h)v \text{ for some } \eta(h) \in \mathbb{C}^\times \text{ and all } v \in V\}$. Prove that H is a normal subgroup of G and that the map $h \mapsto \eta(h)$ is an isomorphism between H and its image in \mathbb{C}^\times.

(b) (5 points) Let χ_V be the character function of G acting on V, i.e., $\chi_V(g) = \text{tr}(g)$ with g viewed as an automorphism of V. Prove $|\chi_V(g)| \leq n$ for all $g \in G$, and the equality holds if and only if $g \in H$.

(c) (10 points) Let W be an irreducible representation of G. Then W is isomorphic to a direct summand of $V^{\otimes m}$ for some m (as representations of G).

Problem 2. Let a_1, \ldots, a_n be nonnegative real numbers.

(a) (6 points) Prove that the $n \times n$ matrix $A = (t^{a_i + a_j})$ is positive semi-definite for every real number $t > 0$. Find the rank of A.

(b) (7 points) Let $B = (c_{ij})_{n \times n}$ be an $n \times n$-matrix with $c_{ij} = \frac{1}{1 + a_i + a_j}$. Prove that A is a positive semi-definite matrix.

(c) (7 points) Prove that B is positive definite if and only if a_i are all distinct.

Problem 3. Consider the equations $X^2 - 82Y^2 = \pm 2$

(a) (5 points) Show that if (x, y) is a solution for $X^2 - 82Y^2 = \pm 2$, then $(9x - 82y, x - 9y)$ is a solution for $X^2 - 82Y^2 = \mp 2$.

(b) (7 points) Show that the equations have solutions over $\mathbb{Z}/p^n\mathbb{Z}$ for any n and odd prime p.

(c) (8 points) Show that the equations have no solutions over \mathbb{Z}.

Problem 4. Let S and T be nonabelian finite simple groups, and write $G = S \times T$.

(a) (7 points) Show that the total number of normal subgroups of G is four.

(b) (6 points) If S and T are isomorphic, show that G has a maximal proper subgroup not containing either direct factor.

(c) (7 points) If G has a maximal proper subgroup that contains neither of the direct factors of G, show that S and T are isomorphic.
Problem 5. (20 points) Let \mathbb{F} be a finite field and $f_i \in \mathbb{F}[X_1, X_2, ..., X_n]$ be polynomials of degree d_i, where $1 \leq i \leq r$, such that $f_i(0, ..., 0) = 0$ for all i. Show that if

$$n > \sum_{i=1}^{r} d_i,$$

then there exists nonzero solution to the system of equations: $f_i = 0$, for all $1 \leq i \leq r$. (Hint: you may first verify that the number of integral solutions is congruent to the following number modulo p

$$\sum_{X \in \mathbb{F}^n} \prod_{i=1}^{r} (1 - f_i(X)^{q-1}).$$

)

Problem 6.

(a) (5 points) Let A and B be two real $n \times n$ matrices such that $AB = BA$. Show that $\det(A^2 + B^2) \geq 0$.

(b) (15 points) Generalize this to the case of k pairwise commuting matrices.