Problem 1. (20 pt) Let G be a finite \mathbb{Z}-module (i.e., a finite abelian group with additive group law) with a bilinear, (strongly) alternative, and non-degenerate pairing
\[\ell : G \times G \to \mathbb{Q}/\mathbb{Z}. \]
Here “(strongly) alternating” means for every $a \in G$, $\ell(a, a) = 0$; “non-degenerate” means for every nonzero $a \in G$ there is a $b \in G$ such that $\ell(a, b) \neq 0$. Show in steps the following statement:
\[(S) : G \text{ is isomorphic to } H_1 \oplus H_2 \text{ for some finite abelian groups } H_1 \simeq H_2 \text{ such that } \ell|_{H_i \times H_i} = 0. \]

(1.1) (5pt) For every $a \in G$, write $o(a)$ for the order of a and $\ell_a : G \to \mathbb{Q}/\mathbb{Z}$ for the homomorphism $\ell_a(b) = \ell(a, b)$. Show that the image of ℓ_a is $o(a)^{-1}\mathbb{Z}/\mathbb{Z}$.

(1.2) (5pt) Show that G has a pair of elements a, b with the following properties:
(a) $o(a)$ is maximal in the sense that for any $x \in G$, $o(x) | o(a)$;
(b) $\ell(a, b) = o(a)^{-1} \mod \mathbb{Z}$.
(c) $o(a) = o(b)$
We call the subgroup $<a, b> = Za + Zb$ a maximal hyperbolic subgroup of G.

(1.3) (5pt) Let $<a, b>$ be a maximal hyperbolic subgroup of G. Let G' be the orthogonal complement of $<a, b>$ consisting of elements $x \in G$ such that $\ell(x, c) = 0$ for all $c \in <a, b>$. Show that G is a direct sum as follows:
\[G = Za \oplus Zb \oplus G'. \]

(1.4) (5pt) Finish the proof of (S) by induction.

Problem 2 (40pt). Let $O_n(\mathbb{C})$ denote the group of $n \times n$ orthogonal complex matrices, and $M_{n \times k}(\mathbb{C})$ the space of $n \times k$ complex matrices, where n and k are two positive integers. For $i = 0, 1$, let F_i be the space of rational function f on $M_{n \times k}(\mathbb{C})$ such that
\[(*) \quad f(gx) = \det(g)^i f(x) \quad \text{for all } g \in O_n(\mathbb{C}) \text{ and } x \in M_{n \times k}(\mathbb{C}). \]
We want to study in steps the structures of F_0 and F_1.

1
(2.1) (10pt) For each \(x \in M_{n \times k} \), let \(V_x \) denote the subspace of \(\mathbb{C}^n \) generated by columns of \(x \), and let \(Q(x) = x^t \cdot x \in M_{k \times k}(\mathbb{C}) \). Show the following are equivalent:

(a) the space \(V_x \) has dimension \(k \), and the Euclidean inner product \((\cdot, \cdot)\) is non-degenerate on \(V_x \) in the sense that \(V_x^\perp \cap V_x = 0 \).

(b) \(\det Q(x) \neq 0 \).

(2.2) (10pt) Show that \(F_0 \) is a field generated by entries of \(Q(x) \).

(2.3) (10pt) Assume \(k < n \) and let \(f \in F_1 \). Show that \(f = 0 \) by the following two steps:

(a) for any \(x \in M_{n \times k}(\mathbb{C}) \) with \(\det Q(x) \neq 0 \), construct a \(g \in O_n(\mathbb{C}) \) such that \(g|_{V_x} = 1 \) and \(\det g = -1 \).

(b) Show that \(f \) vanishes on a general point \(x \in M_{n \times k}(\mathbb{C}) \) with \(\det Q(x) \neq 0 \), thus \(f \equiv 0 \).

(2.4) (10pt) Assume \(k \geq n \). Show that \(F_1 \) is a free vector space of rank 1 over \(F_0 \).

Problem 3. (40pt) Consider the equation \(f(x) := x^3 + x + 1 = 0 \). We want to show in steps that

\[
\text{for any prime } p, \text{ if } \left(\frac{31}{p} \right) = -1, \text{ then } x^3 + x + 1 \text{ is solvable mod } p.
\]

Let \(x_1, x_2, x_3 \) be three roots of \(f(x) := x^3 + x + 1 = 0 \). Let \(F = \mathbb{Q}(x_1) \), and \(L = \mathbb{Q}(x_1, x_2, x_3) \), and \(K = \mathbb{Q}(\sqrt{\Delta}) \) where \(\Delta \) is the discriminant of \(f(x) \):

\[
\Delta = [(x_1 - x_2)(x_2 - x_3)(x_3 - x_1)]^2.
\]

(3.1) (10pt) Show that \(f \) is irreducible, that \(\Delta = -31 \), and that \(F \) is not Galois over \(\mathbb{Q} \);

(3.2) (10pt) Show that \(\text{Gal}(L/\mathbb{Q}) \simeq S_3 \), the permutation group of three letters, that \(\text{Gal}(L/K) \simeq \mathbb{Z}/3\mathbb{Z} \), and that \(\text{Gal}(L/F) \simeq \mathbb{Z}/2\mathbb{Z} \);

(3.3) (20pt) Let \(O_F, O_K, O_L \) be rings of integers of \(F, K, L \) respectively. Let \(p \) be a prime such that \(x^3 + x + 1 = 0 \) is not soluble in \(\mathbb{Z}/p\mathbb{Z} \). Show the following:

(a) (5pt) \(pO_F \) is still a prime ideal in \(O_F \),

(b) (5pt) \(pO_L \) is product of two prime ideals in \(O_L \), and

(c) (5pt) \(pO_K \) is product of two primes ideals in \(O_K \), and

(d) (5pt) \(x^2 + 31 = 0 \) is soluble in \(\mathbb{F}_p \).
Problem 4. (40pt) Let p be a prime and \mathbb{Z}_p the ring of p-adic integers with a p-adic norm normalized by $|p| = p^{-1}$. Let $\phi : \mathbb{Z}_p \rightarrow \mathbb{Z}_p$ be a map defined by a power series of the form

$$\phi(x) = x^p + p \sum a_n x^n, \quad a_n \in \mathbb{Z}_p, \quad |a_n| \rightarrow 0.$$

Let E be a field, and F the E-vector space of locally constant E-valued functions on \mathbb{Z}_p with an operator ϕ^* defined by $\phi^* f = f \circ \phi$. We want to show in steps the following statement:

The set of eigenvalues of ϕ^ on F is $\{0, 1\}$.*

(4.1) (10pt) Show that ϕ is a contraction map on each residue class $R \in \mathbb{Z}_p/p\mathbb{Z}_p$:

$$|\phi(x) - \phi(y)| \leq p^{-1}|x - y|, \quad \forall x, y \in R.$$

(4.2) (10pt) Show that there is a $\epsilon_R \in E$ for each residue class R such that

$$\lim_{n} \phi^n(x) = \epsilon_R, \quad \forall x \in R.$$

Here ϕ^n is defined inductively by $\phi^1 = \phi$, $\phi^n = \phi^{n-1} \circ \phi$.

(4.3) (10pt) Let F_0 (resp. F_1) be the subspace of functions f vanishing on each ϵ_R (resp. constant on R) for all residue class R. Show that $\phi^* = 1$ on F_1, and that for each $f \in F_0$ $\phi^n f = 0$ for some $n \in \mathbb{N}$.

(4.4) (10pt) Show that for any $a \in E$, $a \neq 0, 1$, the operator $\phi^* - a$ is invertible on F.

Problem 5 (20pt). Check if the following rings are UFD (unique factorization domain).

(5.1) (5pt) $R_1 = \mathbb{Z}[\sqrt{6}]$;

(5.2) (5pt) $R_2 = \mathbb{Z}[(1 + \sqrt{-11})/2]$;

(5.3) (5pt) $R_3 = \mathbb{C}[x, y]/(x^2 + y^2 - 1)$;

(5.4) (5pt) $R_4 = \mathbb{C}[x, y]/(x^3 + y^3 - 1)$.