Aug 022020
 

定理 形如 $\dfrac pq$($p, q$ 都是素数)的全体有理数构成的集合在非负实数集
中稠密.

令 $0 < a < b$, $q$ 是一个素数.
那么,存在素数 $p$, 使得 $a < p/q\le b$ 当且仅当

$$\pi(bq) > \pi(aq)$$

这里 $\pi$ 是著名的素数个数的函数. 由素数定理, 当 $q\to\infty$ 时

$$\frac{\pi(bq)}{\pi(aq)}\sim\frac{b\ln(aq)}{a\ln(bq)}
=\frac{b(\ln q+\ln a)}{a(\ln q+\ln b)}\sim\frac ba>1.$$

对足够大的 $q$, $\pi(bq)/\pi(aq) > 1$ 为我们的目标.

或者,大同小异换汤不换药

设 $p_n$ 是第个素数。 主要的依据是 $p_n\sim n\ln p_n\sim n\ln n$, $n\to\infty$

事实上,根据素数定理,当 $n\to\infty$ 时

$$\pi(p_n)=n\sim\frac{p_n}{\ln p_n}, $$

$$\ln p_n\sim\ln\frac{p_n}{\ln p_n}\sim\ln n. $$

于是, $p_n\sim n\ln p_n\sim n\ln n$, $n\to\infty$

任意正实数$a$, 设 $n_k=[\dfrac{ak}{\ln k}]$, $m_k=[\dfrac{k}{\ln k}]$,

$$\lim_{k\to\infty}\frac{p_{n_k}}{p_{m_k}} = \lim_{k\to\infty}\frac{n_k\ln n_k}{m_k\ln m_k}=a$$

形如 $\dfrac pq$($p, q$ 都是素数)的全体有理数构成的集合在正实数集中稠密.

Jul 222020
 

Fermat 的平方和定理:

素数 \(p\equiv1\pmod4\),则 \(p\) 能表成两个整数 \( a, b\) 的平方和 \(p=a^2+b^2\).

是很精彩的定理,在堆垒数论很经典,我们很感兴趣。今天先来谈一点关于它的历史。

在历史上,最早考虑把正整数(不仅仅是素数)表示成两个正整数的平方和的可能性的问题的数学家是 Albert Girard. 他的论文发表在 1625 年。前面刚刚提到的Fermat 平方和定理有时候也称为 Girard 定理。至于 Fermat, 他在1640年12月25日给 Marin Mersenne 的一封信对这个定理给出了一个详尽的描述,同时也定出了把 \(p\) 的幂表成两个整数的平方和有多少种方法。

Albert Girard 小传

Albert Girard 1595 出生于法国的 Saint-Mihiel,1632年 12月8日去世在 Leiden, The Netherlands. 他是早期对代数基本定理有思考的数学家,他还给出了斐波那契数的一个归纳定义,他亦是最早在论文中使用\(\sin, \cos, \tan\) 表示三角函数。

Girard 还证明了球面三角形的面积对内角的依赖,这结论以他的名字命名。 他也弹琴,提到写过音乐方面的论述,但没有发表过。

根据 Charles Hutton 的研究,Girard 得出了方程的根的和与乘积,以及它们的幂的公式的系数。此外,他还是第一个发现了方程的根的幂的和的公式的人。

Funkhouser 研究了 Girard 使用对称函数来研究方程的工作在历史上的贡献。Lagrange 后来引用了 Girard 在方程方面的工作。后来,在十九世纪,这项工作引出了Galois, Cauchy和其他的数学家创作的群论

Jul 172020
 

作者:赵亮

问题:有哪些 \(\mathbb{Z}[x]\) 中的多项式,它们在有理数域 \(\mathbb{Q}\) 上是不可约的,而对任意素数 \(p\),模 \(p\) 以后在 \(\mathbb{Z}_p[x]\) 上都是可约的?

当时我给了回答,后来账号注销了,答案也就一并删除了。现在把我的原答案贴在这里:


我所知道的有两大类多项式:

第一类是所有的 Swinnerdon-Dyer 多项式,它们形如 \[f(x)=\prod(x\pm\sqrt{p_1}\pm\sqrt{p_2}\cdots\pm\sqrt{p_n}),\] 其中 \(p_1,\ldots,p_n\) 是互不相同的素数,乘积跑遍所有 \(2^n\) 种不同的组合。这种多项式都是不可约的整系数多项式,但是模任何素数 \(p\) 以后都分解为一次或者二次因式的乘积。

第二类来自分圆多项式,分圆多项式 \(\Phi_n(x)\) 是本原 \(n\) 次单位根在 \(\mathbb{Q}\) 上的极小多项式,其次数为 \(\phi(n)\),这里 \(\phi(\cdot)\) 是 Euler totient 函数。绝大多数分圆多项式模任何素数 \(p\) 都是可约的!实际上我们有如下结论:

定理:分圆多项式 \(\Phi_n(x)\) 模任何素数 \(p\) 都可约当且仅当 \(n\ne1,2,p,2p^k\),其中 \(p\) 是奇素数,\(k\) 是正整数。

你可以看到知乎那个问题下的回答中举的例子都是最简单的 Swinnerdon-Dyer 多项式或者分圆多项式的例子。

 Posted by at 3:00 am
Jul 162020
 

作者:赵亮

Hurwitz 平方和定理是有限群表示论的一个精彩应用,本文是若干年前读书时的笔记。

Hurwitz 平方和定理

我们都熟悉复数的乘法:如果 \(z_1=x_1+y_1i,z_2=x_2+y_2i\) 是两个复数,则 \(|z_1z_2|=|z_1|\cdot|z_2|\),也就是 \[(x_1^2+y_1^2)(x_2^2+y_2^2)=(x_1x_2-y_1y_2)^2+(x_1y_2+x_2y_1)^2.\] 1748 年 Euler 发现了如下的 4 平方和等式: \[(x_1^2+x_2^2+x_3^2+x_4^2)(y_1^2+y_2^2+y_3^2+y_4^2)=z_1^2+z_2^2+z_3^2+z_4^2.\] 其中 \[\begin{align*}&z_1=x_1y_1-x_2y_2-x_3y_3-x_4y_4,\\&z_2=x_1y_2+x_2y_1+x_3y_4-x_4y_3,\\&z_3=x_1y_3+x_3y_1-x_2y_4+x_4y_2,\\&z_4=x_1y_4+x_4y_1+x_2y_3-x_3y_2.\end{align*}\] 4 平方和等式说的是在 Hamilton 四元数体中范数仍然是乘性的。1848 年 Caley 发现了八元数,从而导出了类似的 8 平方和等式,当然具体写出来会很复杂,这里就按下不表了。

一般地,如果能在 \(n\) 维欧式空间 \(\mathbb{R}^n\) 上定义向量之间的乘法: \[\mathbb{R^n}\times\mathbb{R^n}\rightarrow\mathbb{R^n}:(v,w)\rightarrow v\times w\] 使得 \(v\times w\) 对 \(v,w\) 都是线性的,而且乘积的范数等于范数的乘积:\(|v\times w|=|v|\cdot |w|\) (这里 \(|\cdot|\) 是通常的欧式范数),则我们就得到了一个 \(n\) 平方和等式。

在接下来的 50 年里,人们一直致力于寻找可能的 16 平方和等式,但是都失败了,于是开始怀疑是否没有这样的等式成立。终于在 1898 年 Hurwitz 证明了这样的结论:

Hurwitz 平方和定理:设 \(x=(x_1,\ldots,x_n)\)\(y=(y_1,\dots,y_n)\) 为 \(\mathbb{R}^n\) 中的向量。如果存在关于 \(x,y\) 的双线性函数 \(z_1(x,y),\ldots,z_n(x,y)\) 使得等式 \[(x_1^2+\cdots+x_n^2)(y_1^2+\cdots+y_n^2)=z_1^2+\cdots+z_n^2\] 恒成立, 那么 \(n=1,2,4,8\)

正如前面说过的,Huiwitz 平方和定理说的是在实数域 \(\mathbb{R}\),复数域 \(\mathbb{C}\),四元数 \(\mathbb{H}\) 和八元数 \(\mathbb{O}\) 中,元素的 (欧式) 范数和向量的乘法是相容的,而在其它维数的 \(\mathbb{R}^n\) 上是不可能定义与欧式范数相容的向量乘法的。

Hurwitz 本人的证明是纯线性代数的,线性代数的证明较为初等,不过步骤略长。1943 年 Eckmann 用有限群表示论的方法给了一个漂亮的证明,本文就来介绍这个证明。

将问题转化为矩阵方程

设 \(z=(z_1,\ldots,z_n)\),则 \(z\) 关于 \(y\) 是线性的,因此存在 \(n\) 阶矩阵 \(A\) 满足 \(z=yA\),当然矩阵 \(A\) 和 \(x\) 有关。于是 Hurwitz 定理中的等式变成 \[(x_1^2+x_2^2+\cdots+x_n^2)yy’=yAA’y’.\] 由于 \(y\) 是不定元,因此 \[AA’=(x_1^2+\cdots+x_n^2)I_n.\] 进一步,由于 \(A\) 关于 \(x\) 也是线性的,因此设 \(A=A_1x_1+\cdots+A_nx_n\),则 \[AA’=\sum_{i=1}^nA_iA_i’x_i^2+\sum_{1\leq i<j\leq n}(A_iA_j’+A_jA_i’)x_ix_j.\] 从而我们得到一组矩阵方程 \[A_iA_i’=I_n,\quad A_iA_j’+A_jA_i’=0 \quad \text{for}\ i\ne j.\] 进一步可以把 \(A_n\) 归一化为单位矩阵:令 \(Q_i=A_iA_n^{-1}\),于是 \(Q_1,\ldots,Q_{n-1}\) 满足 \[Q_i’=-Q_i,\quad Q_i^2=-I_n,\quad Q_iQ_j=-Q_jQ_i\quad\text{for}\ i\ne j.\] 显然 \(n\) 必须是偶数 (奇数阶反对称矩阵行列式都是 0),而 \(n=2\) 的时候结论是成立的,所以下面我们都假定 \(n>2\),于是 \(n\) 的可能值为 \(4,6,8,\ldots\)

用群表示论的工具得出矛盾

考虑这样一个抽象群 \(G\),它由元素 \(a,g_1,\ldots,g_{n-1}\) 生成,且 \[ a^2=1,\quad g_i^2=a,\quad g_ig_j=ag_jg_i\ \text{when}\ i\ne j.\] 这个群的结构很好分析:

  • \(|G|=2^n\),每个元素形如 \(a^{e_0}g_1^{e_1}\cdots g_{n-1}^{e_{n-1}}\),其中 \(e_i\in\{0,1\}\)
  • \(G\) 的中心 \(Z(G)=\{1,a,g_1g_2\cdots g_{n-1},ag_1g_2\cdots g_{n-1}\}\)
  • \(G\) 的换位子群 \([G,G]=\{1,a\}\),从而 \(G\) 有 \(2^{n-1}\) 个线性表示。
  • \(G\) 的任何非平凡共轭类都只有两个元素 \(\{g,ag\}\),从而 \(G\) 有 \(2^{n-1}+2\) 个共轭类,其不可约复表示的个数也是 \(2^{n-1}+2\)

于是我们知道 \(G\) 有 \(2^{n-1}\) 个一次表示,还有 2 个次数大于 1 的表示,设它俩的次数分别是 \(f_1,f_2\),根据不可约表示次数的平方和等于 \(G\) 的阶,得到方程 \[f_1^2+f_2^2 =2^{n-1}.\] 再利用不可约表示的次数整除 \(G\) 的阶,知道 \(f_1\) 和 \(f_2\) 都是 2 的幂,这只有一种可能,就是 \[ f_1=f_2=2^{\frac{n}{2}-1}.\]

现在 Hurwitz 矩阵方程给出了 \(G\) 的一个 \(n\) 维表示,这个表示可以分解为若干不可约表示的直和,我们断言其中不含有一次表示,从而只能是若干个 \(2^{\frac{n}{2}-1}\) 次表示的直和:这是因为元素 \(a\) 在这个表示下是 \(n\) 阶矩阵 \(-I_n\),从而其在任何不变子空间上的作用都是乘以 -1。但是任何一次表示都把 \(a\in [G,G]\) 映射为 1,矛盾!

于是 \(2^{\frac{n}{2}-1}\big| n\),设 \(n=2^r\cdot s\),其中 \(s\) 为奇数,则 \(\frac{n}{2}-1\leq r\),从而 \[ 2^r\leq n\leq 2r+2.\] 注意 \(n\) 是偶数,所以只能是 \(n=4,6,8\),这就完成了 Hurwitz 定理的证明。

Jul 082020
 

​7月7日,Thomas F. Bloom, Olof Sisask 在 arXiv 上传了一篇论文 Breaking the logarithmic barrier in Roth’s theorem on arithmetic progressions( arxiv.org/abs/2007.03528), 该文的主要结果是证明了:

Theorem 1 如果 \(A\subset \{1, . . . , N\}\), 且 \(A\) 不含非平凡的三项等差数列,即 \(x+y=2z\) 的解, \(x\ne y\). 则

\[|A|\ll \frac{N}{(\log N)^{1+c}}\]

\(c\gt 0\) 是绝对常数.

Thomas F. Bloom, Olof Sisask 的这个结果改进了Roth 的一个关于整数不含三项等差数列的上界的定理。

如果 \(A\subset \{1, . . . , N\}\), 且 \(A\) 不含非平凡的三项等差数列,那么 \(A\) 的阶可以有多大?

在此之前的记录是:\(A\) 的元素个数可达 \(O\Big(\frac{N}{(\log N)^{1-o(1)}}\Big)\). 这个结果可以找到三个不同的证明,这些证明在 \(o(1)\) 这一项有一点差异。这几个证明来自Sanders, Thomas F. Bloom, Olof Sisask, 还有 Schoen.

要指出的是:常数 \(c\) 是 principle effective,但是计算它需要艰巨的工作。

数学家们的期待,是 Behrend​ 提出的猜想,这个最佳的上界是

\[|A|\ll Ne^{-O((\log N)^c)}\]

接下来,说一下 Thomas F. Bloom的Olof Sisask 定理的第一个副产品:

Erdos 的著名猜想

Erdos 有一个著名的猜测是:如果 \(A\subset\Bbb N\), 且  \(\sum\limits_{n\in A}\frac1n=\infty\),那么 \(A\) 包含任意长的等差数列。

由 Thomas F. Bloom, Olof Sisask  的定理,可以导出 Erdos 的这著名猜想的一个不平凡的特殊情况:

Corollary 2 如果 \(A\subset\Bbb N\), 且  \(\sum\limits_{n\in A}\frac1n=\infty\),那么 \(A\) 含无穷多非平凡的三项等差数列。

Proof.  若不然,假定 \(A\subset\Bbb N\), 且 \(A\) 仅仅含有有限个非平凡的三项等差数列。于是,对于任意的 \(N\)

\[F(N)\colon=|A\cap\{1, . . . , N\}|\ll\frac{N}{(\log N)^{1+c}}+1,\]

这里的 \(c\) 是定理 1 的常数。进而

\[\sum_{n\in A\atop n\leq N}\frac1n=\frac{F(N)}{N}+\int_1^N\frac{F(t)}{t^2}\mathrm dt\ll \int_1^N\frac{1}{t(\log t)^{1+c}}\mathrm dt+1\ll1.\]

令 \(N\to\infty\), 得 \(\sum\limits_{n\in A}\frac1n\) 收敛。

\(A\) 的阶的下界

最后,顺便提一下 \(A\) 的阶的下界, 1946年 Behrend的高维球面构造法给出了

\[|A|\geq Ne^{-c\sqrt{\log N } }\]

Jul 042020
 

前几天传出了一个消息,英国杜伦大学的Andrew Lobb和波士顿学院的Joshua Greene这两位数学家解决了一个有109 年历史的著名难题:任何简单闭合曲线,都包含四个可以连接形成正方形的点。

然则,这则新闻有点耸人听闻。事实上,这两个数学家解决的只是一个附加了条件的 弱化版本,并没有彻底搞定 109 年前的那个原始的猜想。

我们先来看看这个猜想是一个什么问题。这个猜想(Toeplitz square peg problem)是猜测任意连续的简单闭曲线上存着四个点构成为一个正方形。

Square Peg Problem

Andrew Lobb 和 Joshua Greene 证明的结果是: 对于任意光滑的 Jordan 曲线和长方形 R, 可以找到曲线上的四个点使得构成的长方形相似于 R.

换言之,Andrew Lobb 和 Joshua Greene 证明了 对于光滑的 Jordan 曲线上存着四个点构成为一个正方形,并且不仅仅如此,他们对于光滑的 Jordan 曲线得到的结果比猜想还要好很多。

于是 ,我们可以说,109 年前的猜想还没有完全解决,依旧还是未决难题。看来必须得有全新的想法才可能突破。

关于这个猜想,数学家已经做出了很多努力。数学家们方法尝试了许多,Tao(陶哲轩)用积分的方法,而 Lobb和Greene 的 6 页的文章是(代数)拓扑风格,是建立在前人做出的贡献,尤其是 Shevchishin 的一个定理

the Klein bottle does not admit a smooth Lagrangian embedding in \(\Bbb C^2\).

之上,以辛几何为方法,取得了进展。

Andrew Lobb 和 Joshua Greene

Andrew Lobb,本科就读于牛津大学,在哈佛大学攻读博士学位,目前在杜伦大学担任助理教授,同时亦是日本冲绳科技大学的 Excellence Chair。

Joshua Greene,先后分别在芝加哥大学和普林斯顿大学攻读硕士、博士学位,现在是波士顿学院教授。

 

Oct 122017
 

齐次多项式(Homogeneous polynomial)在数学中有其特殊的重要性.

在代数几何, Homogeneous polynomial 尤其受到偏爱.

实数域上的的 \(n\) 元多项式环, 以 \(\Bbb R[x_1, x_2,\dotsc, x_n]\) 表之.

Hilbert 限制在齐次多项式.

定义 5.1 设 \(p\in \Bbb R[x_1, x_2,\dotsc, x_n]\), 其次数 \(\leqslant d\). 把 \(n+1\) 元 \(d\) 次齐次多项式

\begin{equation}\overline{p}(x_0, x_1,\dotsc, x_n)=x_0^dp\Big(\frac{x_1}{x_0}, \frac{x_2}{x_0},\dotsc, \frac{x_n}{x_0}\Big)\end{equation}

称为是 \(p\) 的齐次化(Homogenization). 具体来说, 当  \(p=\sum cx_1^{d_1}x_2^{d_2}\dotsm x_n^{d_n}\), 那么

\begin{equation}\begin{split}\overline{p}(x_0, x_1,\dotsc, x_n )&=x_0^d\sum c\Big(\frac{x_1}{x_0}\Big)^{d_1}\Big(\frac{x_2}{x_0}\Big)^{d_2} \dotsm \Big(\frac{x_n}{x_0}\Big)^{d_n}\\&=\sum cx_0^{d-d_1-d_2-\dotsb-d_n}x_1^{d_1}x_2^{d_2}\dotsm x_n^{d_n} \\&=\sum cx_0^{d_0}x_1^{d_1}x_2^{d_2}\dotsm x_n^{d_n},\end{split}\end{equation}

这里 \(d_0=d-d_1-d_2-\dotsb-d_n\).

定理 5.2  设 \(p\in \Bbb R[x_1, x_2,\dotsc, x_n]\), 其次数 \(\leqslant d\). 如果 \(d\) 为偶数, 那么

  • \(p\) 非负当且仅当 \(\overline{p}\)  非负;
  • \(p\) 是多项式的平方和当且仅当 \(\overline{p}\)  能表成 \(\frac d2\) 次齐次多项式的平方和.

引理 5.3  假定 \(p\), \(p_1\), \(p_2\), \(\dotsc\), \(p_k\in \Bbb R[x_1, x_2,\dotsc, x_n]\) 都是多项式, \(p=p_1^2+p_2^2+\dotsm+p_k^2\).  如果 \(p_1\), \(p_2\), \(\dotsc\), \(p_k\) 不全是零多项式, 那么

  1. \(p\ne0\);
  2. \(\deg(p)=2\max\{\deg(p_l)|l=1, 2, \dotsc, k\}\);
  3. 如果 \(p\) 是 \(d\) 次齐次多项式, 则诸 \(p_l\) 皆是 \(\dfrac d2\) 次齐次多项式.

Proof   不妨 \(p_1\ne0\). 于是, 存在 \(x\in\Bbb R^n\), 使得 \(p_1(x)\ne0\). 然后

\[p(x)=p_1^2(x)+p_2^2(x)+\dotsm+p_k^2(x)\ge0\]

蕴涵 \(p(x)\ne0\).

写 \(p_l\) 为 \(p_l=p_{l0}+p_{l1}+p_{l2}+\dotsb+p_{ld}\), 这里 \(p_{li}\) 是 \(p_l\) 的 \(i\) 次齐次成分, \(d=\max\{\deg(p_l)|l=1, 2, \dotsc, k\}\). 很明显, \(\deg(p)\leqslant2d\); 1 表明 \(p\) 的 \(2d\) 次齐次成分 \(p^2_{1d}+p^2_{2d}+\dotsb+p^2_{kd}\ne0\), 因为有某 \(l\) 使得 \(p_{ld}\ne0\).

第 3 部分的证明与 2 完全类似, 考虑诸 \(p_l\) 的最低次齐次成分即可.  \(\Box\)

Proof   当 \(p\) 非负之时, 要证明 \(\overline{p}\) 非负, 若 \(x_0\ne0\), 由 \((1)\) 式即可; 若 \(x_0=0\), 由

\begin{equation}\overline{p}(0, x_1,\dotsc, x_n)=\lim_{h\to0}\overline{p}(h, x_1,\dotsc, x_n)\end{equation}

立得.

当 \(\overline{p}\) 非负之时, 只要注意

\begin{equation}p(x_1,\dotsc, x_n)=\overline{p}(1, x_1,\dotsc, x_n)\end{equation}

即知 \(p\) 非负.

如果\(p\) 是多项式的平方和, \(p=\sum\limits_{l=1}^kp_l^2\), 那么依据引理 5.3, \(\deg(p_l)\leqslant\dfrac d2\). 然后

\begin{equation}\overline{p}=\sum_{l=1}^k\Bigg(x_0^{\frac d2}p_l\Big(\frac{x_1}{x_0}, \frac{x_2}{x_0},\dotsc, \frac{x_n}{x_0} \Big)\Bigg)^2 \end{equation}

说明  \(\overline{p}\)  能表成 \(\frac d2\) 次齐次多项式的平方和.

如果  \(\overline{p}\)  能表成多项式的平方和, \(\overline{p}=\sum\limits_{l=1}^kh_l^2\),

\begin{equation}p=\overline{p}(1, x_1,\dotsc, x_n)=\sum_{l=1}^k\Big(h_l(1, x_1,\dotsc, x_n)\Big)^2\end{equation}

说明 \(p\)  能表成多项式的平方和.       \(\Box\)

现在, 很容易的, 我们顺便建立二次多项式非负与平方和的联系.

定理 5.4 设二次多项式 \(p\in \Bbb R[x_1, x_2,\dotsc, x_n]\) 非负, 那么 \(p\) 能写成多项式的平方和.

有了定理 5.2, 这个定理就是很显然的了: 只需要考虑与 \(p\) 对应的二次齐次多项式 \(\overline{p}\) 就够了. \(\overline{p}\) 是二次型. 依据高等代数的正定二次型的理论, 我们断言定理 5.4 为真.