Mar 252014
 

Which integers can be expressed as \(a^3+b^3+c^3-3abc\)? \(a\), \(b\), \(c\in\Bbb Z\).

\[(a\pm1)^3+a^3+a^3-3(a\pm1)a^2=3a\pm1\]

\[(a-1)^3+a^3+(a+1)^3-3a(a+1)(a-1)=9a\]

\[2(a^3+b^3+c^3-3abc)=3(a+b+c)(a^2+b^2+c^2)-(a+b+c)^3\]

If \(3\mid(a^3+b^3+c^3-3abc)\), then \(3\mid(a+b+c)^3\), \(3\mid(a+b+c)\). so \(9\mid(a^3+b^3+c^3-3abc)\).

All \(n\) such that \(3\nmid n\) or \(9\mid n\).

 Leave a Reply

(required)

(required)

This site uses Akismet to reduce spam. Learn how your comment data is processed.