Jul 242014
 

Conjecture

There exist elliptic curve groups \(E(\Bbb Q)\) of arbitrarily large rank.

用 \(r\) 表示 \(\Bbb Q\) 上的椭圆曲线 \(E\) 的秩—the rank of the Mordell–Weil group \(E(\Bbb Q)\).

一个悬而未决的著名难题是: \(r\) 是否可以任意大?

Martin-McMillen 2000 年有一个 \(r\geq24\) 的例子:

\begin{equation*}\begin{split}y^2+xy+y&=x^3-120039822036992245303534619191166796374x\\&+ 504224992484910670010801799168082726759443756222911415116\end{split}\end{equation*}

Hasse-Weil \(L\)-function \(L(s, E)\) 在 \(s=1\) 处的零点的阶数 \(r_a\) 称为 \(E\) 的 analytic rank(解析秩).

Manjul Bhargava, Christopher Skinner, Wei Zhang(张伟) 7 月 7 日在 arXiv 上传的论文 “A majority of elliptic curves over \(Q\) satisfy the Birch and Swinnerton-Dyer conjecture“, 宣布了取得的进展:

  1. \(\Bbb Q\) 上的椭圆曲线, when ordered by height(同构类以高排序), 至少有 \(66.48\%\) 满足 BSD conjecture;
  2. \(\Bbb Q\) 上的椭圆曲线, when ordered by height, 至少有 \(66.48\%\) 有有限 Tate–Shafarevich group;
  3. \(\Bbb Q\) 上的椭圆曲线, when ordered by height, 至少有 \(16.50\%\) 满足 \(r=r_a=0\), 至少有 \(20.68\%\) 满足 \(r=r_a=1\).

谁将在 8 月 13 日的 ICM 2014 开幕式上获得 Fields medal?坊间向来不缺传闻. 数论大牛 Manjul Bhargava 无疑是最耀眼的明星.

Aug 092012
 

依赖相对迹公式方面的最新成果, 同余数(congruent number)最近有所进展.

其实, 我第一次从不定方程的书上了解到何为同余数的时候, 并不称为同余数, 而被冠名合同数. 同余数就是这样的 \(n\in\Bbb N^+\), 存在一个边长为有理数的直角三角形, 其面积为 \(n\). 边长为有理数的直角三角形被定义为有理三角形(有理三角形在不同的环境有不同的定义,比如有些作者不要求是直角三角形,也有人把直角三角形这个条件换成面积是有理数). 当有理三角形的边长都是整数的时候, 又称为勾股三角形.

哪些 \(n\) 是同余数?  有无简单的判定方法? 如果 \(n\) 是同余数, 请给出一个面积为 \(n\) 的有理三角形. 这些问题古老而困难, 目前仅有部分结果. 同余数和椭圆曲线, BSD猜想(Birch and Swinnerton-Dyer conjecture)联系甚大.

第一个结果是 André Weil 的 Number Theory: An Approach Through History From Hammurapi to Legendre (1984) 第二章 \(10\) 的主题.

定理 \(1\)  任意 \(n\in\Bbb N^+, n^2,\, 2n^2\) 不是同余数.