意大利几何学家 L. Mascherom 于 \(1797\) 年证明了, 凡是能用尺规作出的几何图形都可以仅仅使用圆规来完成. \(1833\) 年, Jakob Steiner 根据 Poncelet 的想法, 指出: 如果给定一个圆和它的中心, 那么, 能用尺规作出的几何图形都能单独用直尺来作出.
我一直很好奇, 这些结论究竟是如何证明的? Ross Honsberger 在他的书, “Ingenuity in Mathematics”, 的第 \(15\) 节提供了一个详尽的证明, 这一节的标题是: Mascheroni and Steiner. \(1994\) 年, Norbert Hungerbuhler 给出了 Mascherom 的结果, 所谓的Mohr–Mascheroni定理, 的一个简单的证明.