Mar 252014
 

Which integers can be expressed as \(a^3+b^3+c^3-3abc\)? \(a\), \(b\), \(c\in\Bbb Z\).

\[(a\pm1)^3+a^3+a^3-3(a\pm1)a^2=3a\pm1\]

\[(a-1)^3+a^3+(a+1)^3-3a(a+1)(a-1)=9a\]

\[2(a^3+b^3+c^3-3abc)=3(a+b+c)(a^2+b^2+c^2)-(a+b+c)^3\]

If \(3\mid(a^3+b^3+c^3-3abc)\), then \(3\mid(a+b+c)^3\), \(3\mid(a+b+c)\). so \(9\mid(a^3+b^3+c^3-3abc)\).

All \(n\) such that \(3\nmid n\) or \(9\mid n\).

Aug 192013
 

Richard Taylor(就是协助 Andrew Wiles 完成了Fermat’s Last Theorem 的证明的那位) 写了一篇很有趣的文章 Modular Arithmetic: Driven by Inherent Beauty and Human Curiosity(The Institute Letter, 2012, Summer, 6-8). 这文章指出: Euclid 在他的几何原本 已经得到方程

\begin{equation}x^2+y^2=z^2\end{equation}

的全部整数解. Taylor 进一步指出, 只要

\begin{equation}x^2+y^2=2z^2\end{equation}

有一个非零整数解, 那么 Euclid 的办法依然有效, 可以用来找出  \(x^2+y^2=2z^2\) 的全部解, 并且 Taylor 也写出了全部的解. 然后, 对于  \(x^2+y^2=3z^2\), 很遗憾, 没有非平凡的解.

对方程

\begin{equation}x^2+y^2=nz^2,\end{equation}

Taylor 就说了这么多. 那么, 我们来尝试找出这方程的所有有理解, 以及所有整数解.

根据 Fermat 的平方和定理, 方程 (3) 有(有理解, 整数解)解, 当且仅当 \(n\) 能表成两个整数的平方和 \(n=a^2+b^2\). 因此, 我们考察下面的方程就行了:

\begin{equation}x^2+y^2=(a^2+b^2)z^2,\end{equation}

这里 \(a,b\in\Bbb Z\).