Feb 042014
 

Let \(f(x)=x^n+a_{n-1}x^{n-1} +\dotsb+a_1x+a_0\) be a polynomial with integer coefficients, and let \(d_1\),\(\dotsc\), \(d_n\) be pairwise distinct integers. Suppose that for infinitely many prime numbers \(p\) there exists an integer \(k_p\) for which

\begin{equation}f\left(k_p+d_1\right)\equiv f\left(k_p+d_2\right)\equiv\dotsb\equiv f\left(k_p+d_n\right)\equiv0\pmod p.\end{equation}

Prove that there exists an integer \(k_0\) such that

\[f\left(k_0+d_1\right)=f\left(k_0+d_2\right)=\dotsb= f\left(k_0+d_n\right)=0.\]

用 \(P\) 表示 \(\gt n\), 且具有下列性质的质数 \(p\) 所组成的集合: 存在整数 \(k_p\), 使得 \((1)\) 为真.

记 \(u=d_1+d_2 +\dotsb+d_n+a_{n-1}\). 对于 \(p\in P\), 设 \(K_p=nk_p+u\); 对每个 \(\leq n\) 的正整数 \(i\), 设 \(D_i=nd_i-u\). 易见, 所有的 \(\mid D_i-D_j\mid\) 都不会是 \(0\).

\[F(x)=n^nf\Big(\frac xn\Big)=x^n+na_{n-1}x^{n-1}+n^2a_{n-2}x^{n-2}\dotsb+n^{n-1}a_1x+n^na_0.\]

注意到, 对正整数 \(i\)(\(1\leq i\leq n\)), 有

\[F\big(K_p+D_i\big)=n^nf\bigg(\frac{K_p+D_i}n\bigg)=n^nf\big(k_p+d_i\big)\equiv0\pmod p.\]

只要质数 \(p\in P\) 足够大, 任意的 \(\mid D_i-D_j\mid\) 都不被 \(p\) 整除. 既然 \(K_p+D_1\), \(K_p+D_2\), \(\dotsc\), \(K_p+D_n\) \(\bmod p\) 互不同余, 从而它们就是 \(F(x)\equiv0\pmod p\) 的全部解. 然后, Vieta formula 定出

\[\big(K_p+D_1\big)+\big(K_p+D_2\big)+\dotsb+\big(K_p+D_n\big)\equiv-na_{n-1}\pmod p,\]

\[\big(K_p+nd_1-u\big)+\big(K_p+nd_2-u\big)+\dotsb+\big(K_p+nd_n-u\big)\equiv-na_{n-1}\pmod p,\]

进而

\[nK_p\equiv-n\big(a_{n-1}+d_1+d_2+\dotsb+d_n-u\big)=0\pmod p.\]

既然 \(p\gt n\), \(p\mid K_p\).

再次使用 Vieta formula, 当 \(1\leq l\leq n\) 时,

\[(-1)^ln^la_{n-l}\equiv\prod_{1\leq i_1\lt\dotsb\lt i_l\leq n}\big(K_p+D_{i_1}\big)\dotsm\big(K_p+D_{i_l}\big)\pmod p,\]

由 \(p\mid K_p\) 得知

\begin{equation}(-1)^ln^la_{n-l}\equiv\prod_{1\leq i_1\lt\dotsb\lt i_l\leq n}D_{i_1}\dotsm D_{i_l}\pmod p.\end{equation}

只要 \(P\) 中的质数 \(p\) 使得任意的 \(\mid D_i-D_j\mid\) 都不被 \(p\) 整除, 则 \((2)\) 成立. 如此, 就必须有

\[(-1)^ln^la_{n-l}=\prod_{1\leq i_1\lt\dotsb\lt i_l\leq n}D_{i_1}\dotsm D_{i_l}.\]

从而

\[F(x)=\big(x-D_1\big)\big(x-D_2\big)\dotsm\big(x-D_n\big).\]

返回到多项式 \(f\) 以及 \(d_i\),

\[f(x)=\Big(x-d_1-\frac un\Big)\Big(x-d_2-\frac un\Big)\dotsm\Big(x-d_n-\frac un\Big).\]

\(f\) 是首一多项式, 其有理根必是整数. 故 \(\dfrac un\) 是整数.

令 \(k_0=\dfrac un\), 则 \(f(k_0+d_i)=0\) 对所有的 \(1\leq i\leq n\).

Jan 192014
 

黎景辉, 赵春来合著的 “模曲线导引(Introduction to Modular Curves)” 出了新版. 北京大学出版社(Peking University press) 2014 年 1 月已出第二版.

Introduction to Modular Curves

Introduction to Modular Curves

本书的目的在于介绍模形式的几何理论的背景知识. 本书可供数学系的研究生作为教材, 也可以供从事数论, 代数几何等专业的数学工作者使用. 作者在2002年出版本书第一版之后, 近些年又做了大量的修订, 使得该书的内容更完善更前沿.

就内容而言, 首先是修正了一些错误. 其次, 第一章从范畴开始, 附带 Abel 范畴, 第四章谈到了 2-范畴理念, 补充了形变和叠, 第三章增加了层范畴和上同调群, 第七章加进了椭圆曲线, 第十章讲解了 Ramanujan 猜想的证明.

本书不是初级读物. 亲如果想修炼神功, 请先学一些代数几何, 模形式, 代数数论. 认真的搞懂本书后, 就可以登堂入室, 看懂最新的进展了.

黎景辉是澳大利亚悉尼大学数学系教授, 主要研究方向是代数数论. 他的博士是 1974 年在耶鲁大学拿到的.

赵春来是北京大学数学学院教授, 主要研究方向亦是代数数论.

目录

第 1 章 范畴   1
第 2 章 模空间  43
第 3 章 层      51
第 4 章 叠     110
第 5 章 Hilbert 函子   139
第 6 章 Picard 函子     168
第 7 章 模曲线        187
第 8 章 微分形式    208
第 9 章 TATE 曲线   224
第 10 章 模形式   249
参考文献
索引

作者: 黎景辉, 赵春来
版次: 2
开本: 16开
装订: 平
字数: 267 千字
页数: 296
ISBN: 978-7-301-23438-9
条形码: 9787301234389
出版日期: 2014-01-09
定价: 35 人民币元

Jan 142014
 

数学一入深似海, 从此红尘是路人

华罗庚

数论导引
堆垒素数论
指数和的估计及其在数论中的应用

闵嗣鹤

数论的方法

潘承洞 潘承彪

哥德巴赫猜想
模形式导引
解析数论基础
代数数论
素数定理的初等证明
初等数论 第三版

陆洪文

二次数域的高斯猜想
模形式讲义

黎景辉 赵春来 蓝以中

模曲线导引 第二版 黎景辉 赵春来
二阶矩阵群的表示与自守形式 黎景辉 蓝以中

叶扬波

模形式与迹公式

李文卿

数论及其应用

裴定一

模形式和三元二次型
算法数论

冯克勤

分圆函数域
非同余数和秩零椭圆曲线
代数数论
平方和
代数数论简史

柯召 孙琦

谈谈不定方程
初等数论 100 例

单墫 余红兵 冯志刚 刘培杰

趣味数论 单墫
谈谈不定方程 单墫, 余红兵
初等数论 冯志刚
数论(原名”数学竞赛中的数论问题”) 余红兵
初等数论难题集 刘培杰

Jan 022014
 

很偶然的, 看到了几个韩京俊传出来的数论问题. 据说问题来自牟晓生.

  1. 设 \(p\) 为大于 \(3\) 的素数, 证明 \(\dfrac{p^p-1}{p-1}\) 和 \(\dfrac{p^p+1}{p+1}\) 不能都是素数幂;
  2. 设 \(n\gt5\), 证明 \(n!\) 不能整除它的正约数之和;
  3. 设 \(A\), \(B\) 划分正整数集, 如果\(A+A\) 和 \(B+B\) 都只含有有限个素数, 证明\(A\) 或 \(B\) 是全体奇数的集合;
  4. 设 \(M\) 是给定正整数, 证明对每个充分大的素数 \(p\), 存在\(M\)个连续的 \(\bmod p\) 的二次非剩余;
  5. 设 \(q\) 是一个不大于\(\dfrac{\pi^2}6 -1\) 的正有理数, 证明 \(q\) 可写为若干互异单位分数的平方和;
  6. 对每个充分大的正整数 \(k\), 存在若干互异正整数, 其和为 \(k\), 其倒数和为 \(1\);
  7. 在 \(n^2\) 和 \((n+1)^2\) 间总有一些正整数的积是一个平方数的两倍;
  8. 若一些单位根之和在单位圆上, 则必亦为单位根;
  9. 设 \(f(x)=a_0+a_1x+a_2x^2+\dotsb\) 是一个整系数的形式幂级数, 假定 \(\dfrac{f^\prime(x)}{f(x)}\) 也是一个整系数的形式幂级数, 证明对任意下标 \(k\), \(a_k\) 能被 \(a_0\) 整除.

这些问题显然非常的有难度. 第 3 个问题, 俺多年前就见过, 是 Paul Erdős 在美国数学月刊上提的问题(编号 A6431).

俺特意调查了其他几个问题的出处.

问题 5 也是 Paul Erdős 提出的, 但证明是 R.L. Graham (也可能是 Sierpsinski) 给的. R.L. Graham 证明了

\(\dfrac pq\) can expressed as the finite sum of reciprocals of distinct squares if and only if

\[\frac pq\in[0, \frac{\pi^2}6-1)\cup[1,\frac{\pi^2}6).\]

问题 6 的答案也是 R. L. Graham 提供的: Graham published a proof  in 1963 as “A Theorem on Partitions”, Journal of the Australian Mathematical Society 3 (1963), pp. 435-441.

If  \(n\) is an integer exceeding \(77\) then there exist positive integers \(k\), \(a_1\), \(a_2\), \(\dotsc\), \(a_k\) such that:

  1. \(1\lt a_1\lt a_2\lt \dotsc \lt a_k;\)
  2.  \(a_1+ a_2+ \dotsb + a_k=n;\)
  3.  \(\frac1{a_1}+ \frac1{a_2}+ \dotsb + \frac1{a_k}=1.\)

His proof is constructive and fairly short, but it does require a long table of decompositions for relatively small values of \(n\). It would be interesting to see a non-constructive proof that doesn’t require such a long list.

问题 7 也不简单.

Granville and Selfridge, Product of integers in an interval, modulo squares: “We prove a conjecture of Irving Kaplansky which asserts that between any pair of consecutive positive squares there is a set of distinct integers whose product is twice a square.”

The details are Electronic Journal of Combinatorics, Volume 8(1), 2001.

有比问题 8 更普遍的结果. More precisely, let \(\zeta_1\), \(\dotsc\), \(\zeta_k\) be \(n\)-th roots of unity. If

\[|\sum_{i=1}^k n_i\zeta_i|= 1,\]

where \(n_i\in\mathbb Z\), then \(\sum\limits_{i=1}^k n_i \zeta_i\) is also an \(n\)-th root of unit.

Aug 192013
 

Richard Taylor(就是协助 Andrew Wiles 完成了Fermat’s Last Theorem 的证明的那位) 写了一篇很有趣的文章 Modular Arithmetic: Driven by Inherent Beauty and Human Curiosity(The Institute Letter, 2012, Summer, 6-8). 这文章指出: Euclid 在他的几何原本 已经得到方程

\begin{equation}x^2+y^2=z^2\end{equation}

的全部整数解. Taylor 进一步指出, 只要

\begin{equation}x^2+y^2=2z^2\end{equation}

有一个非零整数解, 那么 Euclid 的办法依然有效, 可以用来找出  \(x^2+y^2=2z^2\) 的全部解, 并且 Taylor 也写出了全部的解. 然后, 对于  \(x^2+y^2=3z^2\), 很遗憾, 没有非平凡的解.

对方程

\begin{equation}x^2+y^2=nz^2,\end{equation}

Taylor 就说了这么多. 那么, 我们来尝试找出这方程的所有有理解, 以及所有整数解.

根据 Fermat 的平方和定理, 方程 (3) 有(有理解, 整数解)解, 当且仅当 \(n\) 能表成两个整数的平方和 \(n=a^2+b^2\). 因此, 我们考察下面的方程就行了:

\begin{equation}x^2+y^2=(a^2+b^2)z^2,\end{equation}

这里 \(a,b\in\Bbb Z\).

Aug 052013
 

For which positive integers \(a, b, c, d\), any natural number \(n\) can be represented as

\[n=ax^2+by^2+cz^2+dw^2,\]

where \(x, y,z,w\) are integers?

Lagrange’s four-square theorem states that \((a,b,c,d)=(1,1,1,1)\) works. Ramanujan proved that there are exactly \(54\) possible choices for \(a, b, c, d\).

For which positive integers \(a, b, c, d\),

\[n=ax^2+by^2+cz^2+dw^2,\]

is solvable in integers \(x, y,z,w\) for all positive integers \(n\) except one number? For example, \(n=x^2+y^2+2z^2+29w^2\) is solvable for all natural number \(n\) except \(14\), \(n=x^2+2y^2+7z^2+11w^2\) and \(n=x^2+2y^2+7z^2+13w^2\) except \(5\).

P.R.Halmos proved that there are exactly \(88\) possible choices for \(a, b, c, d\).

What integers are not in the range of \(a^2+b^2+c^2-x^2\)? Ramanujan also thought about that.

Jul 112013
 

不存在无穷质数等差数列. 下面是几种证明:

设等差数列的首项为 \(a\), 公差为 \(d\).

证明 1

分两种情况:

  • a=1. 此时 \(1+(d+2)d=(d+1)^2\) 是合数;
  • \(a\geqslant2\). 此时 \(a+ad=a(d+1)\) 是合数.

证明 2

连续合数可以任意长, 这是熟知的. 不曾想,  一个副产品居然就是我们的目标.

\((m+1)!+2,(m+1)!+3,\dotsc,(m+1)!+m+1\) 是 \(m\) 个连续合数.

证明 3

稍强一点的结果 采用完全剩余系

取一个与公差 \(d\) 互质的正整数 \(m\),

\[a, a+d, a+2d, \dotsc, a+(m-1)d\]

将跑遍 \(\bmod  m\) 的完全剩余系, 于是必有一项 \(\equiv0\pmod m\).

证明 4

这个结论也是熟知的: 不存在多项式

\[f(x)=\sum\limits_{i=0}^ma_ix^i,\]

使得对于任意 \(n∈\Bbb N, f(n)\) 都是质数.

证明 5

这个高级一点点: 采用自然密率 (natural density 或 asymptotic density), 而不是更常见的 Schnirelmann 密率 (Schnirelmann density).

由质数组成的集合的 asymptotic density 是 \(0\), 而等差数列形成的集合的 asymptotic density 为正.

证明 6

使用中国剩余定理证明”连续合数可以任意长”的加强版. 这个证明来自 matrix67 在2015年5月30日的日志, 但这里一些改进.

任取 \(n\) 个两两互质的正整数 \(m_1\), \(m_2\), \(\dotsc\), \(m_n\). 存在正整数 \(a\), 使得

\[m_i|\left(a+i\right),  i=1, 2, \dotsc, n.\]

[证明 6 更新于 北京时间 2015 年 6 月 24 日]

Jul 052013
 

单墫的数论书 “趣味数论” 是一本不错的数论入门书. 这是我看过的第一本完全的数论书籍.

阅读本书不需要多少准备知识, 初中毕业生基本没有什么困难. 当然, 一个爱思考的大脑, 对数学的热爱, 一支铅笔一张纸肯定是不能缺少的!

对数学竞赛来说, 需要的数论知识点, 这书都有, 除了不是必须的二次剩余. 这书有不少堆垒数论的问题. 除此之外, 第七章是丢番图逼近的简单介绍, 第九章, 第十章可以看作解析数论, 代数数论的最简单入门. 这些数论分支, 继续深入, 都有很多好的文献.

单墫的的书, 有一些共同的特征: 问题多, 定理少! 这在本书也得到完整的体现.

本书最早由中国青年出版社出版, 是绿色封皮. 最新的第二版, 是华东师大出版社推出. 新版, 相较前版, 仅仅只有最后一节, 修订交待了 Wiles 证明了Fermat 大定理.

下面是对本书的一些补充材料:

1.21 唯一因式分解定理的证明

本书给出的是最流行的办法.  Hardy 的名作 [2] 用最小数原理给出了另外一个证明.

2.5  五边形与五角数

一般, 第 \(k\) 个 \(m+2(m\geqslant1)\) 角数记为
\[p_m(k)=\dfrac{mk(k-1)}2+k.\]

2.8  一个不平凡的结论

这个结论是 Euler 的.  可在 [3] 的最后一章找到一个证明.

2.9 什么数恰好有 \(60\) 个因数?

最后给出的答案, 遗漏了一种情况: \(p^{59}\).

\(kn = x^2+y^2+1\)

\(n\) is a odd number, then there exists positive integer \(k\gt0\) such that \(kn = x^2+y^2+1\) for some integers \(x,y\).

with use of the Chinese remainder theorem we have to solve this problem only for power of primes:

suppose that \( n=p_1^{a_1}p_2^{a_2}\dotsm p_k^{a_k}\), then we know that for each \(i\), there exist \( x_i, y_i\) such that \( p_i^{a_i}\) divides  \( x_i^2+y_i^2+1\). Now consider these equations:

\[ X\equiv x_i\pmod {p_i^{a_i}}, i= 1,2,\dotsc,k.\]

these equations have solution because of  Chinese remainder theorem.

similarly these equation have solution:

\[  Y\equiv y_i\pmod {p_i^{a_i}}, i= 1,2,\dotsc,k.\]

now \(n\) divides  \( X^2+Y^2+1.\)

then we can apply hansel’s lemma. Actually we want to show that if for some \( \alpha \), there exist \(x,y\) such that \( p^\alpha\) divides  \( x^2+y^2+1\), then for  \( \alpha +1\) such \(x\)  and \(y\) exist. For this because in case \( \alpha \), \( p\) cannot divide both \(x\)  and \(y\), then we can use hansel for improve \( \alpha \) to \( \alpha+1.\)

References

  1. 华罗庚, 数论导引.
  2. Hardy, An introducton to the theory of numbers. 有中文本
  3. Tom M. Apostol, Introduction to analytic number therory. 有中文本