Jul 062020
 

本文整理自知乎 question/23673510. 下面的观点看法完全来自网友,本站不写任何评论。

匿名用户:多年前和田的学生谈过这事,说是因为在中国的数学界愿景不同,利益不同,看法不同造成的。此外,田的硕士导师张恭庆对他有影响,使他不可能支持丘为了发展自己愿景的一些做法。当时田在麻省理工学院学院已经拿到正式的教职,因此丘对他不服从也无可奈何。

两个人争论的事情其实在其次,因为即使有一两个数学家人品有问题,存在剽窃行为或故意损害他人的名誉,也并不是很大的事情。但是这件事对在美国的华人数学家多少会有影响。现在许多人因为陈省身的影响做微分几何,到美国来之后选导师常常跟随中国教授。于是影响到整个(中国人)几何分析学界,一派是田刚的学生,另一派是丘成桐的学生。
读博士之后毕业出来找工作会互相排斥,出席会议田刚的学生会避开在丘成桐面前提到田刚。这些学术政治对数学发展显然都是不利的。一个简单的例子是张益唐回国之后在那里做讲座都成了问题,因为去那里都会得罪人。

另一方面,大部分中国学生的数学水平本来就很差,读博士之前之前大多没有严格的科研训练。在博士阶段遭遇这样的经历谈论学术政治,导师没有打开视野进行开拓性的研究而教育他们为了发表论文而发表论文,希望日后在就业市场竞争能占到优势,这对他们未来的发展没有很大帮助。对于年轻的数学家,应该把学术政治上的争论放下,选一个自己心仪的导师做数学。在数学上,无论是田刚还是丘成桐都有相当的贡献,年轻人从他们的工作还是能学到很多(如丘成桐的微分几何讲义)。

但是数学和数学家是分不开的,接受过去纷繁复杂的现实,一个人大踏步向前前进并不是这么容易。Richard Borcherds说过,对他来说读论文比和他人谈话了解数学更直接。几何分析现在是一个非常技术性的分支,想要做出好研究而像他那样在现实生活里不涉及那些数学家是很困难的。例如曹怀东的学生就会对纽约客上的批评文章非常敏感 – Perelman的论文非常难,我的导师好不容易做了许多工作补上了细节,还说他的文章没有原创性,没有价值!不公平!他们没有雄心壮志在四维流形上超越Perelman伟大的工作,但是他们热衷于对这些事品头论足,做出一点微不足道的结果就自鸣得意,更耻于向他人学习自己不感兴趣的领域。开学术会议的时候,中国人之间谈的大多是金钱,职位和如何在美国立足,而不是数学。这是学术政治摧毁人的地方。

Yuhang Liu:  我有一些老师也对丘田之间的冲突感到很惋惜。我本科一个老师说:“两个人都做了很不错的工作。弄成这样是干什么呢?”事实上两人也在尽量淡化冲突,他们肯定都不希望媒体继续跟进报导两人之间的恩怨,毕竟这种事情传出去也不是什么好听的事情。

最后说一句,两人对年轻数学学生的培养都是尽心尽力的,这一点大家有目共睹无可否认。我个人觉得,上一辈倘若做错了什么事情,那也是上一辈的事情,下一辈已经是新的一代,不要过多纠缠上一辈的事情。学术界应该是纯粹干净的学术界,不是什么学术江湖。

Mar 202015
 

由著名数学家丘成桐挂帅的“丘成桐数学科学中心”19日在清华大学揭牌。国际著名数学家、清华大学数学科学中心主任丘成桐出席仪式,仪式由清华大学副校长薛其坤主持。清华大学表示,将把该中心打造成高水平数学研究和高水平人才培养的阵地,力争发展成为具有国际影响的世界一流数学中心。

杜占元、陈旭、顾秉林及丘成桐共同为“丘成桐数学科学中心”揭牌。教育部科技司副司长雷朝滋宣读了《教育部关于同意依托清华大学成立“丘成桐数学科学中心”的批复》。这标志着清华大学数学科学的研究和教育踏上了新的征程。

丘成桐在致辞中说,回国后自己的工作得到了来自国内和国际各界人士的大力支持,尤其是清华大学数学科学中心成立后,国内外很多顶尖数学家前来访学、授课,并协助开展相关工作,这令自己非常感动。他表示,中心除了科学研究,很重要的一部分工作是培养年轻人。一直以来中国的本科生是世界一流的,但真正成功的教育是在本土培养第一流的硕士生、博士生。希望在五年内中心能培养世界第一流的博士,也希望未来这个中心能培养第一流的数学家和接班人,成为中国数学家的大家庭,也成为全世界数学家的交流中心。

Jul 132014
 

第五届丘成桐大学生数学竞赛笔试已于 2014 年 7 月 12 日至 13 日举行. 竞赛组委会组织专家集中阅卷后, 评选出参加决赛(面试)的团队和个人名单. 第五届丘成桐大学生数学竞赛决赛(口试)将于 2014 年 8 月 2 日和 3 日在北京举行.

分析与方程

1. Let  \(f \colon\Bbb R\to \Bbb R\) be continuous function which s.t.

\[\sup_{x, y\in \Bbb R} |f(x+y)-f(x)-f(y)|<\infty\]

if we have \(\lim_{n\to \infty}\frac{f(n)}n=2014\), Prove \(\sup_{x\in \Bbb R}|f(x)-2014x|<\infty\).

2. Let \(f_1\), \(f_2\), \(\dotsc\) , \(f_n\in\) \(H(D)\bigcap C(\bar{D})\) , where \(D=\{z: |z|<1\}\). Prove

\[\phi(z)=|f_1(z)|+|f_2(z)|+\dotsb+|f_n(z)|\]

achieve maximum value on \(\partial D\).

3. Prove that if there is conformal mapping betwwen the annulus \(\{z:r_{1}<|z|<r_{2}\}\) and the annulus \(\{z:\rho_1<|z|<\rho_{2}\}\)

then

\[\frac{r_{2}}{r_{1}}=\frac{\rho_{2}}{\rho_{1}}\]

4. 设\(U(\xi)\) 是 \(\Bbb R\) 是有界函数且有有限多个不连续点, 证明

\[P_U(x)=\frac1\pi\int_{\Bbb R}\frac y{(x-\xi)^2+y^2}U(\xi)\,\mathrm d\xi\]

是调和的(Harmonic function)在半平面 \(\{z \in \Bbb C\colon\Im z >0\}\), 若 \(\xi\) 为 \(U\) 连续点

\[P_{U}(x)\to U(\xi), z \to \xi\]

5. 海森堡不等式

\[\int_{-\infty}^{+\infty}x^2|f(x)|^2\,\mathrm dx\int_{-\infty}^{+\infty}\xi ^2|\hat{f}(\xi)|^2 \,\mathrm d\xi \geq \frac{(\int_{-\infty}^{+\infty}|f(x)|^2\,\mathrm dx)^2}{16\pi^2}\]

几何与拓扑

1.  Let  \(X\) be the quotient space of \(S^2\) under the identifications \(x \sim -x\) for \(x\)  in the equator \(S^{1}\). Cmpute the homology groups \(H_{n}(X)\). Do the same for \(S^{3}\) with antipodal points of the equator \(S^{2} \subset S^{3}\) identified.

2.  Let \(M \to \Bbb R^3\)  be a graph defined by \(z=f(u,v)\) where \(\{u,v,z\}\) is a Descartes coordinate system in \(\Bbb R^3\). Suppose that \(M\) is a minimal surface.

Prove that:

(a) The Guass curvature \(K\) of \(M\) can be expressed as

\[K=\Delta \log (1+\frac1W),W:=\sqrt{1+(\frac{\partial f}{\partial u})^{2}+(\frac{\partial f}{\partial v})^{2}}\]

(b) If \(f\) is defined on the whole \(uv\)-plane, then \(f\) is a linear function. (Bernstein theorem)

3.  Let \(M=\Bbb R^2 / \Bbb Z^2\) be the two dimensional torus, \(L\) the line \(3x=7y\) in \(\Bbb R^2\), and \(S=\pi (L) \subset M\) where \(\pi :\Bbb R^2 \to M\) is the projection map. Find a differential form on \(M\) which represents the Poincare dual of \(S\).

4. Let \((\tilde M,\tilde g) \to (M,g)\) be a Riemannian submersion. This is a submersion \(p: M \to M\) such that for each \(x\in \tilde{M}, \ker^{\bot}(Dp) \to T_{p(x)}(M)\)  is a Linear isometry.

(a) Show that p shortens distance.
(b) If \((\tilde{M},\tilde{g})\) is complete, so is \((M,g)\).
(c) Show by example that if \((M,g)\) is complete, \((\tilde{M},\tilde{g})\) may not be complete.

5. Let \(\psi :M \to \Bbb R^3\) be an isometric immersion of a compact surface \(M\) into \(\Bbb R^3\).

Prove that

\[\int_MH^2 \,\mathrm d\sigma \geq 4\pi\]

where \(H\) is the mean curvature of \(M\) and \(d\sigma\) is the area element of \(M\).

6. The unit tangent bundle of \(S^2\) is the subset

\[T^1(S^2)=\{(p,v)\in \Bbb R^2\, | \, \|p\|=1, (p,v)=0,\|v\|=1\}\]

Show that it is a smooth submanifold of the tangent bundle \(T(S^2)\) of  \(S^2\) and \(T^1(S^2)\) is diffeomorphic to \(\Bbb RP^3\).

感谢博士数学论坛的网友 zwb565055403 提供的两套试题, 网友数函分享的 PDF 试题

个人赛试题

Analysis and differential equations Individual 2014

Geometry and topology Individual 2014

Algebra and number theory Individual 2014

Probability and statistics Individual 2014

Applied Math. and Computational Math. Individual 2014

团体赛

team 2014

Oct 112013
 

2013 年第四届丘成桐(Shing-Tung Yau)大学生数学竞赛(S.T. Yau College Student Mathematics Contests)已经落下帷幕. 决赛已经于 8 月 11 日和 12 日在北京中国科学院数学与系统科学院思源楼和晨兴中心举行, 颁奖典礼也已于 8 月 12 日在清华大学举行.

个人赛试题

Analysis and differential equations 2013 Individual

Geometry and topology 2013 Individual

Algebra and number theory 2013 Individual

Probability and statistics 2013 Individual

Applied Math. and Computational Math. 2013 Individual

团体赛试题

Team 2013

感谢博士数学论坛的网友数函的分享

Sep 122013
 

A new book A History in Sum: 150 Years of Mathematics at Harvard (1825-1975) has just been published by Harvard.

In the twentieth century, American mathematicians began to make critical advances in a field previously dominated by Europeans. Harvard’s mathematics department was at the center of these developments.A History in Sum is an inviting account of the pioneers who trailblazed a distinctly American tradition of mathematics–in algebraic geometry and topology, complex analysis, number theory, and a host of esoteric subdisciplines that have rarely been written about outside of journal articles or advanced textbooks. The heady mathematical concepts that emerged, and the men and women who shaped them, are described here in lively, accessible prose.

The story begins in 1825, when a precocious sixteen-year-old freshman, Benjamin Peirce, arrived at the College. He would become the first American to produce original mathematics–an ambition frowned upon in an era when professors largely limited themselves to teaching. Peirce’s successors–William Fogg Osgood and Maxime Bôcher–undertook the task of transforming the math department into a world-class research center, attracting to the faculty such luminaries as George David Birkhoff. Birkhoff produced a dazzling body of work, while training a generation of innovators–students like Marston Morse and Hassler Whitney, who forged novel pathways in topology and other areas. Influential figures from around the world soon flocked to Harvard, some overcoming great challenges to pursue their elected calling.

A History in Sum elucidates the contributions of these extraordinary minds and makes clear why the history of the Harvard mathematics department is an essential part of the history of mathematics in America and beyond.

Review

This book tells the tale of how mathematics developed at Harvard–and by extension in the United States–since early days. It is filled with fascinating stories about some of the legendary names of modern mathematics. Both fans of mathematics and readers curious about the history of Harvard will enjoy it. (Edward Witten, Professor Of Physics, Institute For Advanced Study)

A History in Sum is a beautiful tribute to a beautiful subject, one that illuminates mathematics through the lens of some of its most remarkable practitioners. The authors’ love of mathematics shines through every chapter, as they use accessible and spirited language to describe a wealth of heady insights and the all-too-human stories of the minds that discovered them. There is perhaps no better book for immersion into the curious and compelling history of mathematical thought. (Brian Greene, Professor Of Mathematics & Physics, Columbia University)

The book is written in a leisurely style, the scope is remarkably broad, and the topics covered are explained astonishingly well. Once I started the book, I simply couldn’t put it down and I was ecstatic to easily understand important mathematics far from my own research interests. (Joel Smoller, Professor Of Mathematics, University Of Michigan)

A History in Sum contains a wealth of good stories, stories that go to the heart of the development of mathematics in this country. The authors succeed in humanizing and enlivening what might otherwise be a dry treatment of the subject. (Ron Irving, Professor Of Mathematics, University Of Washington)

  • Author: Steve Nadis and Shing-Tung Yau
  • Hardcover: 280 pages
  • Publisher: Harvard University Press (October 7, 2013)
  • Language: English
  • ISBN-10: 067472500X
  • ISBN-13: 978-0674725003
  • Price: $39.95
  • Product Dimensions: 6 x 9 inches
Jul 032012
 

2012年第三届丘成桐(Shing-Tung Yau)大学生数学竞赛(S.T. Yau College Student Mathematics Contests)笔试已于7月1, 2日成功举行.

个人赛试题

Analysis and differential equations 2012 Individual

Geometry and topology 2012 Individual

Algebra and number theory 2012 Individual

Probability and statistics 2012 Individual

Applied Math. and Computational Math. 2012 Individual

团体赛试题

Group 2012

分析与方程个人赛的第 \(4\) 题有误. 通常结论需要函数 \(f\) 是连续的, 在 \(f\) 是可测的情形有反例.

台湾大学李宗儒和簡鴻宇同学北京大学的章博宇同学分别给出了反例.