28 日, Xiu-Xiong Chen(陈秀雄), Simon Donaldson, Song Sun(孙崧, 很年轻, 曾在科大少年班就读) 在 arxiv 上传了一篇文章 “Kähler-Einstein metrics and stability“, 给出了一个证明 K-稳定的 Fano 流形容许 Kähler-Einstein 度量(Yau-Tian-Donaldson conjecture)的轮廓, 工具是 Donaldson 新发展的连续性方法:
“We annnounce a proof of the fact that a K-stable Fano manifold admits a Kähler-Einstein metric and give a brief outline of the proof.”
田刚 25 日在 Stony Brook 庆祝 Lawson 70 寿辰的会议上宣布证明了 K 稳定性猜想, 方法好像与 Donaldson 不太一样. 11月1日下午2:00-3:00, 田刚又在北京国际数学研究中心重复了这个报告.
孙崧, 安徽省安庆市怀宁县金拱人. 2000 年中考, 他以怀宁县第一名, 进入怀宁县最好的中学——安徽省怀宁中学.
2002年, 安徽省怀宁中学读高二的孙崧获得全国高中学生化学竞赛二等奖. 同年他参加高考, 成为怀宁县考进科大少年班的第一人.
进入中科大后, 良好的学习氛围给了他扎实的数理基础和良好的科研素养. 在他的不懈努力下, 于 2006 年拿到全额奖学金进入美国威斯康星大学数学系追随陈秀雄教授. 现为纽约州立大学石溪分校助理教授.
陈秀雄 1982 年高考就以全省前 100 名, 全市第 1 名的优异成绩被中国科技大学数学系录取, 并于 1987 年毕业. 接着, 他到中国科学院研究生院师从彭家贵教授. 1989 年由国家保送去美国宾夕法尼亚大学攻读博士和博士后, 并获美国国家科学基金资助. 1994 年获美国宾州大学博士学位. 他是著名几何学家卡拉比教授的最后一位博士.
what the relation of GTR with the kahler-metrics ? it proof is definitive?
The 4 dimensional manifold topological geometry is due to the micro symmetry breakdown , derive by two or pose torsion produção spacetime curvatures of severa famílias of smooth lá. Appear the kahler einstein metrics as singularity és of the spacetime contínuos. The junction of space and time in spacetime is mensured by discreteness fields, as topological quantum fields.the oclusãoin tthe space and time are singularity és mensured by positive s calar curvatures carro in famílias of differential smooth lá , the that implica non s table structures
The 4 dimensional manifold topological geometry is generated by micro symmetry breaking, that generated spacetime curvatures with coupled o pose rotations
Is mirror symmetry breaking for generate 4 dimensional manifold of spacetime.this lead us tô curvatures in riemann ian space generated by two or pose torsion.violation of symmetry pt
Topological lá cola reverso tô an objetivo tô into of it selo. The shape will bê alterei with out produced holes in the in the objeto herética will the negative energy or the deformations of the spacetime discreteness ou contínuos lydon with generate fracas in the model.the kahler einstein metrics cola explain the the time manipulativo the space with out generate breakdown. The positive constant s calar curvatures cola manta in s table the topological geométricas structures with altere the the topological Humberto with the smooth geometry
Is interesting for then kahler einstein metrics does appear two situations: positive elíptical constant scalar curvatures are c major than 1, for riemannian geometry generate the closed time like curvatures, but implies not directly the violation causal for major than 2 pi, for other side for c minor than -1, that negative hiperbólic constant scalar curvatures are stable because are immersed in Open time like curvatures, where exist not problems of causality