INDIVIDUAL TEST
 S.-T YAU COLLEGE MATH CONTESTS 2012

Algebra and Number Theory
 Please solve 5 out of the following 6 problems,

 or highest scores of 5 problems will be counted.1. Prove that the polynomial $x^{6}+30 x^{5}-15 x^{3}+6 x-120$ cannot be written as a product of two polynomials of rational coefficients and positive degrees.
2. Let \mathbb{F}_{p} be the field of p-elements and $G L_{n}\left(\mathbb{F}_{p}\right)$ the group of invertible n by n matrices.
(1) Compute the order of $G L_{n}\left(\mathbb{F}_{p}\right)$.
(2) Find a Sylow p-subgroup of $G L_{n}\left(\mathbb{F}_{p}\right)$.
(3) Compute the number of Sylow p-subgroups.
3. Let V be a finite dimensional vector space over complex field \mathbb{C} with a nondegenerate symmetric bilinear form (,). Let

$$
O(V)=\{g \in G L(V) \mid(g u, g v)=(u, v), u, v \in V\}
$$

be the orthogonal group. Prove that fixed point subspace $\left(V \otimes_{\mathbb{C}} V\right)^{O(n)}$ is 1 -dimensional.
4. Let \mathfrak{D} be the ring consisting of all linear differential operators of finite order on \mathbb{R} with polynomial coefficients, of the form

$$
D=\sum_{i=0}^{n} a_{i}(x) \frac{d^{i}}{d x^{i}}
$$

for some natural number $n \in \mathbb{N}$ and polynomials $a_{0}(x), \cdots, a_{n}(x) \in$ $\mathbb{R}[x]$. This ring R operates naturally on $M:=\mathbb{R}[x]$, making M a left \mathfrak{D}-module.
(1) (to warm up) Suppose that $b(x) \in \mathbb{R}[x]$ is a non-zero polynomial in M, and let $c(x)$ be any element in M. Show that there is an element $D \in \mathfrak{D}$ such that $D(b(x))=c(x)$.
(2) Suppose that m is a positive integer, $b_{1}(x), \cdots, b_{m}(x)$ are m polynomials in M linearly independent over \mathbb{R} and $c_{1}(x), \cdots, c_{m}(x)$ are m polynomials in M. Prove that there exists an element $D \in \mathfrak{D}$ such that $D\left(b_{i}(x)\right)=c_{i}(x)$ for $i=1, \cdots, m$.
5. Let Λ be a lattice of \mathbb{C}, i.e., a subgroup generated by two \mathbb{R}-linear independent elements. Let R be the subring of \mathbb{C} consists of elements α such that $\alpha \Lambda \subset \Lambda$. Let R^{\times}denote the group of invertible elements in R.
(1) Show that either $R=\mathbb{Z}$ or have rank 2 over \mathbb{Z}.
(2) Let $n \geq 3$ be a positive integer and $(R / n R)^{\times}$the group of invertible elements in the quotient $R / n R$. Show that the canonical group homomorphism

$$
R^{\times} \rightarrow(R / n R)^{\times}
$$

is injective.
(3) Find maximal size of R^{\times}.
6. Let V be a (possible) infinite dimensional vector space over \mathbb{R} with a positive definite quadratic norm $\|\cdot\|$. Let A be an additive subgroup of V with following properties:
(1) $A / 2 A$ is finite;
(2) for any real number c the set

$$
\{a \in A: \quad\|a\|<c\}
$$

is finite.
Prove that A is of finite rank over \mathbb{Z}.

