INDIVIDUAL TEST
 S.-T YAU COLLEGE MATH CONTESTS 2012

Analysis and Differential Equations

> Please solve 5 out of the following 6 problems, or highest scores of 5 problems will be counted.

1. Compute the integral

$$
\int_{0}^{\infty} \frac{x^{p}}{1+x^{2}} d x,-1<p<1
$$

2. Construct a one to one conformal mapping from the region

$$
U=\left\{\left.z \in \mathbb{C}| | z-\frac{i}{2} \right\rvert\,<\frac{1}{2}\right\} /\left\{\left.z| | z-\frac{i}{4} \right\rvert\,<\frac{1}{4}\right\}
$$

onto the unit disk.
3. Let $f(x)$ be a C^{2} function on \mathbb{R}. Show that

$$
\sup \left|f^{\prime}(x)\right|^{2} \leq 4 \sup |f(x)| \sup \left|f^{\prime \prime}(x)\right| .
$$

4. Let $f(x)$ be a real measurable function defined on $[a, b]$. Let $n(y)$ be the number of solutions of the equation $f(x)=y$. Prove that $n(y)$ is a measurable function on \mathbb{R}.
5. For $1<p, q<\infty, \frac{1}{p}+\frac{1}{q}=1$, let g in L^{q}. Consider the linear functional F on L^{p} given by: $F(f)$ is equal to the integral of $f g$. Show that $\|F\|=\|g\|_{q}$.
6. Let $\mathbb{R}_{+}^{n}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n}>0\right\}$. Show that the formula

$$
u(x)=\frac{2 x_{n}}{n \alpha_{n}} \int_{\partial \mathbb{R}_{+}^{n}} \frac{g(y)}{|x-y|^{n}} d y, x \in \mathbb{R}_{+}^{n}
$$

is a solution of the problem

$$
\Delta u=0, \text { in } \mathbb{R}_{+}^{n}, u=g \text { on } \partial \mathbb{R}_{+}^{n},
$$

where α_{n} is the volume of the unit n dimensional sphere.

