Let  $\phi$  be the Cantor-Lebesgue function and define

$$\psi(x) = \frac{1}{2}(\phi(x) + x)$$

Then  $\psi$  is a strictly increasing function from [0,1] onto [0,1], and maps a measurable subset of Cantor set onto an non-measurable set. (proposition on Royden's real analysis)

So we can suppose E is a subset of Cantor set and  $\psi(E)$  is non-measurable. Define  $f:[-1,1]\to\mathbb{R}$  by

$$f(x) = \begin{cases} \psi(x) & x \in E \\ x^2 + 2 & x \in [-1, 1] \setminus E \end{cases}$$

f(x) is continuous outside E, which is of measure zero. So f(x) is measurable. If  $n(y) := \#\{x : f(x) = y\}$ , then

$${y: n(y) = 1} = \psi(E) \cup {x^2 + 2: x \in E}$$

which is not a measurable set since  $\psi(E)$  is not measurable and  $\{x^2 + 2 : x \in E\}$  is far away from  $\psi(E)$ .

Hence n(y) is not measurable.