Let ϕ be the Cantor-Lebesgue function and define

$$
\psi(x)=\frac{1}{2}(\phi(x)+x)
$$

Then ψ is a strictly increasing function from $[0,1]$ onto $[0,1]$, and maps a measurable subset of Cantor set onto an non-measurable set. (proposition on Royden's real analysis)

So we can suppose E is a subset of Cantor set and $\psi(E)$ is non-measurable. Define $f:[-1,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}\psi(x) & x \in E \\ x^{2}+2 & x \in[-1,1] \backslash E\end{cases}
$$

$f(x)$ is continuous outside E, which is of measure zero. So $f(x)$ is measurable. If $n(y):=\#\{x: f(x)=y\}$, then

$$
\{y: n(y)=1\}=\psi(E) \cup\left\{x^{2}+2: x \in E\right\}
$$

which is not a measurable set since $\psi(E)$ is not measurable and $\left\{x^{2}+2: x \in\right.$ $E\}$ is far away from $\psi(E)$.

Hence $n(y)$ is not measurable.

