On a counterexample to a problem in 2012 S.T. Yau College Math Contests

Zhang Boyu
(Peking University)

July 4, 2012

The following problem is the 4 th problem of the individual test on analysis and differential equations in the 2012 S.T. Yau College Math Contests:

Problem. Let $f(x)$ be a real measurable function defined on $[a, b]$. Let $n(y)$ be the number of solutions of the equation $f(x)=y$. Prove that $n(y)$ is a measureable function on \mathbb{R}.

However, it seems that there is a counterexample to this problem.
Let $a=0, b=1$. Consider the Cantor set $C \subseteq[0,1]$. Then C is a set of measure 0 and there is a one to one map from C to \mathbb{R}.

Let $A \subseteq \mathbb{R}$ be a unmeasureable set such that $0 \notin A$. Then there is a set $A^{\prime} \subseteq C$ which is in one to one correspondence with A. Let

$$
\phi: A^{\prime} \rightarrow A
$$

be a one to one map from A^{\prime} to A.
Then we can construct a function f as follows:

$$
\begin{aligned}
f:[0,1] & \rightarrow \\
x & \mapsto \begin{cases}0 & \text { if } x \notin A^{\prime} \\
\phi(x) & \text { if } x \in A^{\prime}\end{cases}
\end{aligned}
$$

Since $A^{\prime} \subseteq C, A^{\prime}$ is a set of measure zero, hence $f=0$ on a.e. $[0,1]$. So f is a measureable function. However, the function $n(y)$ associated to f is:

$$
n(y)= \begin{cases}0 & \text { if } y \notin A \cup\{0\} \\ \infty & \text { if } y=0 \\ 1 & \text { if } y \in A\end{cases}
$$

Since A is unmeasureable, it is clear that $n(y)$ is an unmeasureable function.
Even if we require that $n(y)$ is everywhere finite on \mathbb{R}, we can still construct similar counterexamples. For instance, we can find a unmeasurable
set $A \subseteq[0,1]$, and choose a subset A^{\prime} in the Cantor set C such that there is a one to one correspondence ϕ from A^{\prime} to A. Then define f as follows:

$$
\begin{aligned}
f:[0,1] & \rightarrow \\
x & \mapsto \begin{cases}x+2 & \text { if } x \notin A^{\prime} \\
\phi(x) & \text { if } x \in A^{\prime}\end{cases}
\end{aligned}
$$

Since $f=x+2$ on a.e. $[0,1], f$ is measureable.
The associated $n(y)$ is:

$$
n(y)= \begin{cases}1 & \text { if } y \in A \text { or } y \in[2,3] \backslash\left(A^{\prime}+\{2\}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Since $A \subseteq[0,1]$ is an unmeasureable set, A^{\prime} is a set of zero measure, $n(y)$ is everywhere finite and unmeasureable.

