INDIVIDUAL TEST
 S.-T YAU COLLEGE MATH CONTESTS 2012

Probability and Statistics

Please solve 5 out of the following 6 problems, or highest scores of 5 problems will be counted.

1. Solve the following two problems:
1) An urn contains b black balls and r red balls. One of the balls was drawn at random, and putted back in the urn with a additional balls of the same color. Now suppose that the second ball drawn at random is red. What is the probability that the first ball drawn was black?
2) Let $\left(X_{n}\right)$ be a sequence of random variables satisfying

$$
\lim _{a \rightarrow \infty} \sup _{n \geq 1} P\left(\left|X_{n}\right|>a\right)=0 .
$$

Assume that sequence of random variables $\left(Y_{n}\right)$ converges to 0 in probability. Prove that $\left(X_{n} Y_{n}\right)$ converges to 0 in probability.
2. Solve the following two problems:

1) Let (Ω, \mathcal{F}, P) be a probability space, \mathcal{G} be a sub-algebra of \mathcal{F}. Assume that X is a non-negative integrable random variable. Set $Y=$ $E[X \mid \mathcal{G}]$. Prove that
(a) $[X>0] \subset[Y>0]$,a.s.;
(b) $[Y>0]=\operatorname{ess} . \inf \{A: A \in \mathcal{G},[X>0] \subset A\}$.
2) Let X and Y have a bivariate normal distribution with zero means, variances σ^{2} and τ^{2}, respectively, and correlation ρ. Find the conditional expectation $E(X \mid X+Y)$.
3. Suppose that $\{p(i, j): i=1,2, \cdots, m ; j=1,2, \cdots, n\}$ is a finite bivariate joint probability distribution, that is,

$$
p(i, j)>0, \sum_{i=1}^{m} \sum_{j=1}^{n} p(i, j)=1
$$

(i) Can $\{p(i, j)\}$ be always expressed as

$$
p(i, j)=\sum_{k} \lambda_{k} a_{k}(i) b_{k}(j)
$$

for some finite $\lambda_{k} \geq 0, \sum_{k} \lambda_{k}=1, a_{k}(i) \geq 0, \sum_{i=1}^{m} a_{k}(i)=1, b_{k}(j) \geq$ $0, \sum_{j=1}^{n} b_{k}(j)=1$?
(ii) Prove or disprove the above relation by use of conditional probability.
4. Let X_{1}, \cdots, X_{m} be an independent and identically distributed (i.i.d.) random sample from a cumulative distribution function (CDF) F, and Y_{1}, \cdots, Y_{n} an i.i.d. random sample from a CDF G. We want to test $H_{0}: F=G$ versus $H_{1}: F \neq G$. The total sample size is $N=m+n$. Consider the following two nonparametric tests.

- The Wilcoxon rank sum tests. The test proceeds by first ranking the pooled X and Y samples and then taking the sum of the ranks associated with the Y sample. Let $R_{y_{1}}, \cdots, R_{y_{n}}$ be the rankings of the sample $y_{1}<\cdots<y_{n}$ from the pooled sample in increasing order. The Wilcoxon rank sum statistic is defined as $W=\sum_{j=1}^{n} R_{y_{j}}$.
- The Mann-Whitney U-test. Let $U_{i j}=1$ if $X_{i}<Y_{j}$, and $U_{i j}=0$ otherwise. The Mann-Whitney U-statistic is defined as $U=\sum_{i=1}^{m} \sum_{j=1}^{n} U_{i j}$. The probability $\gamma=P(X<Y)$ can be estimated as $U /(m n)$. The decision rule is based on assessing if $\gamma=0.5$.
Assume that there are no tied data values.
(a) Show that $W=U+\frac{1}{2} n(n+1)$, which shows that the two test statistics differ only by a constant and yield exactly the same p-values.
(b) Using the central limit theorem, the Wilcoxon rank sum statistic W can be converted to a Z-variable, which provides an easy-to-use approximation. The transformation is

$$
Z_{W}=\frac{W-\mu_{W}}{\sigma_{W}}
$$

where μ_{W} and σ_{W}^{2} are the mean and variance of W under H_{0}. Show that $\mu_{W}=\frac{1}{2} n(N+1)$ and $\sigma_{W}^{2}=\frac{1}{12} m n(N+1)$.
5. Let X be a random variable with $E X^{2}<\infty$, and $Y=|X|$. Assume that X has a Lebesgue density symmetric about 0 . Show that random variables X and Y are uncorrelated, but they are not independent.
6. Let E_{1}, \cdots, E_{n} be i.i.d. random variables with $E_{i} \sim \operatorname{Exponential(1).~}$ Let U_{1}, \cdots, U_{n} be i.i.d. uniformly (on $[0,1]$) distributed random variables. Further, assume that E_{1}, \cdots, E_{n} and U_{1}, \cdots, U_{n} are independent.
(a) Find the density of $X=\left(E_{1}+\cdots+E_{m}\right) /\left(E_{1}+\cdots+E_{n}\right)$, where $m<n$.
(b) Show that $Y=\frac{(n-m) X}{m(1-X)}$ is distributed as the F-distribution with degrees of freedom $(2 m, 2(n-m))$
(c) Find the density of $\left(U_{1} \cdots U_{n}\right)^{-X}$.

