The $6^{\text {th }}$ Romanian Master of Mathematics Competition

Day 1: Friday, March 1, 2013, Bucharest

Language: English

Problem 1. For a positive integer a, define a sequence of integers x_{1}, x_{2}, \ldots by letting $x_{1}=a$ and $x_{n+1}=2 x_{n}+1$ for $n \geq 1$. Let $y_{n}=2^{x_{n}}-1$. Determine the largest possible k such that, for some positive integer a, the numbers y_{1}, \ldots, y_{k} are all prime.

Problem 2. Does there exist a pair (g, h) of functions $g, h: \mathbb{R} \rightarrow \mathbb{R}$ such that the only function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(g(x))=g(f(x))$ and $f(h(x))=$ $h(f(x))$ for all $x \in \mathbb{R}$ is the identity function $f(x) \equiv x$?

Problem 3. Let $A B C D$ be a quadrilateral inscribed in a circle ω. The lines $A B$ and $C D$ meet at P, the lines $A D$ and $B C$ meet at Q, and the diagonals $A C$ and $B D$ meet at R. Let M be the midpoint of the segment $P Q$, and let K be the common point of the segment $M R$ and the circle ω. Prove that the circumcircle of the triangle $K P Q$ and ω are tangent to one another.

Each of the three problems is worth 7 points.
Time allowed $4 \frac{1}{2}$ hours.

