The 6th Romanian Master of Mathematics Competition

Day 1: Friday, March 1, 2013, Bucharest

Language: English

Problem 1. For a positive integer a, define a sequence of integers x_1, x_2, \ldots by letting $x_1 = a$ and $x_{n+1} = 2x_n + 1$ for $n \ge 1$. Let $y_n = 2^{x_n} - 1$. Determine the largest possible k such that, for some positive integer a, the numbers y_1, \ldots, y_k are all prime.

Problem 2. Does there exist a pair (g,h) of functions $g,h: \mathbb{R} \to \mathbb{R}$ such that the only function $f: \mathbb{R} \to \mathbb{R}$ satisfying f(g(x)) = g(f(x)) and f(h(x)) = h(f(x)) for all $x \in \mathbb{R}$ is the identity function $f(x) \equiv x$?

Problem 3. Let ABCD be a quadrilateral inscribed in a circle ω . The lines AB and CD meet at P, the lines AD and BC meet at Q, and the diagonals AC and BD meet at R. Let M be the midpoint of the segment PQ, and let K be the common point of the segment MR and the circle ω . Prove that the circumcircle of the triangle KPQ and ω are tangent to one another.

Each of the three problems is worth 7 points. Time allowed $4\frac{1}{2}$ hours.