The $6^{\text {th }}$ Romanian Master of Mathematics Competition

Day 2: Saturday, March 2, 2013, Bucharest

Language: English

Problem 4. Let P and P^{\prime} be two convex quadrilateral regions in the plane (regions contain their boundary). Let them intersect, with O a point in the intersection. Suppose that for every line ℓ through O the segment $\ell \cap P$ is strictly longer than the segment $\ell \cap P^{\prime}$. Is it possible that the ratio of the area of P^{\prime} to the area of P is greater than 1.9 ?

Problem 5. Given an integer $k \geq 2$, set $a_{1}=1$ and, for every integer $n \geq 2$, let a_{n} be the smallest $x>a_{n-1}$ such that:

$$
x=1+\sum_{i=1}^{n-1}\left\lfloor\sqrt[k]{\frac{x}{a_{i}}}\right\rfloor
$$

Prove that every prime occurs in the sequence a_{1}, a_{2}, \ldots.

Problem 6. $2 n$ distinct tokens are placed at the vertices of a regular $2 n$ gon, with one token placed at each vertex. A move consists of choosing an edge of the $2 n$-gon and interchanging the two tokens at the endpoints of that edge. Suppose that after a finite number of moves, every pair of tokens have been interchanged exactly once. Prove that some edge has never been chosen.

Each of the three problems is worth 7 points.
Time allowed $4 \frac{1}{2}$ hours.

