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Problem 4. Let P and P ′ be two convex quadrilateral regions in the plane (regions contain
their boundary). Let them intersect, with O a point in the intersection. Suppose that for every
line ` through O the segment ` ∩ P is strictly longer than the segment ` ∩ P ′. Is it possible that
the ratio of the area of P ′ to the area of P is greater than 1.9?

(Bulgaria) Nikolai Beluhov

Solution. The answer is in the affirmative: Given a positive ε < 2, the ratio in question may
indeed be greater than 2− ε.

To show this, consider a square ABCD centred at O, and let A′, B′, and C ′ be the
reflections of O in A, B, and C, respectively. Notice that, if ` is a line through O, then the
segments ` ∩ABCD and ` ∩A′B′C ′ have equal lengths, unless ` is the line AC.

Next, consider the points M and N on the segments B′A′ and B′C ′, respectively, such that
B′M/B′A′ = B′N/B′C ′ = (1 − ε/4)1/2. Finally, let P ′ be the image of the convex quadrangle
B′MON under the homothety of ratio (1 − ε/4)1/4 centred at O. Clearly, the quadrangles
P ≡ ABCD and P ′ satisfy the conditions in the statement, and the ratio of the area of P ′ to the
area of P is exactly 2− ε/2.
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Remarks. (1) With some care, one may also construct such example with a point O being
interior for both P and P ′. In our example, it is enough to replace vertex O of P ′ by a point on
the segment OD close enough to O. The details are left to the reader.

(2) On the other hand, one may show that the ratio of areas of P ′ and P cannot exceed 2
(even if P and P ′ are arbitrary convex polygons rather than quadrilaterals). Further on, we
denote by [S] the area of S.

In order to see that [P ′] < 2[P ], let us fix some ray r from O, and let rα be the ray from O
making an (oriented) angle α with r. Denote by Xα and Yα the points of P and P ′, respectively,
lying on rα farthest from O, and denote by f(α) and g(α) the lengths of the segments OXα

and OYα, respectively. Then

[P ] =
1

2

∫ 2π

0
f2(α) dα =

1

2

∫ π

0

(
f2(α) + f2(π + α)

)
dα,

and similarly

[P ′] =
1

2

∫ π

0

(
g2(α) + g2(π + α)

)
dα.
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But XαXπ+α > YαYπ+α yields 2 · 1
2

(
f2(α) + f2(π + α)

)
= OX2

α + OX2
π+α ≥ 1

2XαX
2
π+α >

1
2YαY

2
π+α ≥ 1

2(OY 2
α +OY 2

π+α) = 1
2

(
g2(α) + g2(π + α)

)
. Integration then gives us 2[P ] > [P ′], as

needed.

This can also be proved via elementary methods. Actually, we will establish the following
more general fact.

Fact. Let P = A1A2A3A4 and P ′ = B1B2B3B4 be two convex quadrangles in the plane, and
let O be one of their common points different from the vertices of P ′. Denote by `i the line OBi,
and assume that for every i = 1, 2, 3, 4 the length of segment `i ∩ P is greater than the length of
segment `i ∩ P ′. Then [P ′] < 2[P ].

Proof. One of (possibly degenerate) quadrilaterals OB1B2B3 and OB1B4B3 is convex; the same
holds for OB2B3B4 and OB2B1B4. Without loss of generality, we may (and will) assume that
the quadrilaterals OB1B2B3 and OB2B3B4 are convex.

Denote by Ci such a point that `i ∩ P ′ is the segment BiCi; let ai be the length of `i ∩ P ,
and let αi be the angle between `i and `i+1 (hereafter, we use the cyclic notation, thus `5 = `1
and so on). Thus C2 and C3 belong to the segment B1B4, C1 lies on B3B4, and C4 lies on B1B2.
Assume that there exists an index i such that the area of BiBi+1CiCi+1 is at least [P ′]/2; then
we have

[P ′]

2
≤ [BiBi+1CiCi+1] =

BiCi ·Bi+1Ci+1 · sinαi
2

<
aiai+1 sinαi

2
≤ [P ],

as desired. Assume, to the contrary, that such index does not exist. Two cases are possible.
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Case 1. Assume that the rays B1B2 and B4B3 do not intersect (see the left figure above). This
means, in particular, that d(B1, B3B4) ≤ d(B2, B3B4).

Since the ray B3O lies in the angle B1B3B4, we obtain d(B1, B3C3) ≤ d(C4, B3C3); hence
[B3B4B1] ≤ [B3B4C3C4] < [P ′]/2. Similarly, [B1B2B4] ≤ [B1B2C1C2] < [P ′]/2. Thus,

[B2B3C2C3] = [P ′]− [B1B2C3]− [B3B4C2] = [P ′]− B1C3

B1B4
· [B1B2B4]−

B4C2

B1B4
· [B3B4B1]

> [P ′]

(
1− B1C3 +B4C2

2B1B4

)
≥ [P ′]

2
.

A contradiction.

Case 2. Assume now that the rays B1B2 and B4B3 intersect at some point (see the right figure
above). Denote by L the common point of B2C1 and B3C4. We have [B2C4C1] ≥ [B2C4B3],
hence [C1C4L] ≥ [B2B3L]. Thus we have

[P ′] > [B1B2C1C2] + [B3B4C3C4] = [P ′] + [LC1C2C3C4]− [B2B3L]

≥ [P ′] + [C1C4L]− [B2B3L] ≥ [P ′].

A final contradiction.
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Problem 5. Given an integer k ≥ 2, set a1 = 1 and, for every integer n ≥ 2, let an be the
smallest x > an−1 such that:

x = 1 +
n−1∑
i=1

⌊
k

√
x

ai

⌋
.

Prove that every prime occurs in the sequence a1, a2, . . . .

(Bulgaria) Alexander Ivanov

Solution 1. We prove that the an are precisely the kth-power-free positive integers, that is,
those divisible by the kth power of no prime. The conclusion then follows.

Let B denote the set of all kth-power-free positive integers. We first show that, given a
positive integer c, ∑

b∈B, b≤c

⌊
k

√
c

b

⌋
= c.

To this end, notice that every positive integer has a unique representation as a product of an
element in B and a kth power. Consequently, the set of all positive integers less than or equal
to c splits into

Cb = {x : x ∈ Z>0, x ≤ c, and x/b is a kth power}, b ∈ B, b ≤ c.

Clearly, |Cb| =
⌊

k
√
c/b
⌋
, whence the desired equality.

Finally, enumerate B according to the natural order: 1 = b1 < b2 < · · · < bn < · · · . We
prove by induction on n that an = bn. Clearly, a1 = b1 = 1, so let n ≥ 2 and assume am = bm
for all indices m < n. Since bn > bn−1 = an−1 and

bn =

n∑
i=1

⌊
k

√
bn
bi

⌋
=

n−1∑
i=1

⌊
k

√
bn
bi

⌋
+ 1 =

n−1∑
i=1

⌊
k

√
bn
ai

⌋
+ 1,

the definition of an forces an ≤ bn. Were an < bn, a contradiction would follow:

an =

n−1∑
i=1

⌊
k

√
an
bi

⌋
=

n−1∑
i=1

⌊
k

√
an
ai

⌋
= an − 1.

Consequently, an = bn. This completes the proof.

Solution 2. (Ilya Bogdanov) For every n = 1, 2, 3, . . . , introduce the function

fn(x) = x− 1−
n−1∑
i=1

⌊
k

√
x

ai

⌋
.

Denote also by gn(x) the number of the indices i ≤ n such that x/ai is the kth power of an
integer. Then fn(x+1)−fn(x) = 1−gn(x) for every integer x ≥ an; hence fn(x)+1 ≥ fn(x+1).
Moreover, fn(an−1) = −1 (since fn−1(an−1) = 0). Now a straightforward induction shows that
fn(x) < 0 for all integers x ∈ [an−1, an).

Next, if gn(x) > 0 then fn(x) ≤ fn(x − 1); this means that such an x cannot equal an.
Thus aj/ai is never the kth power of an integer if j > i.

Now we are prepared to prove by induction on n that a1, a2, . . . , an are exactly all kth-
power-free integers in [1, an]. The base case n = 1 is trivial.
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Assume that all the kth-power-free integers on [1, an] are exactly a1, . . . , an. Let b be the
least integer larger than an such that gn(b) = 0. We claim that: (1) b = an+1; and (2) b is the
least kth-power-free number greater than an.

To prove (1), notice first that all the numbers of the form aj/ai with 1 ≤ i < j ≤ n are
not kth powers of rational numbers since ai and aj are kth-power-free. This means that for
every integer x ∈ (an, b) there exists exactly one index i ≤ n such that x/ai is the kth power
of an integer (certainly, x is not kth-power-free). Hence fn+1(x) = fn+1(x − 1) for each such x,
so fn+1(b − 1) = fn+1(an) = −1. Next, since b/ai is not the kth power of an integer, we have
fn+1(b) = fn+1(b− 1) + 1 = 0, thus b = an+1. This establishes (1).

Finally, since all integers in (an, b) are not kth-power-free, we are left to prove that b is
kth-power-free to establish (2). Otherwise, let y > 1 be the greatest integer such that yk | b; then
b/yk is kth-power-free and hence b/yk = ai for some i ≤ n. So b/ai is the kth power of an integer,
which contradicts the definition of b.

Thus a1, a2, . . . are exactly all kth-power-free positive integers; consequently all primes are
contained in this sequence.
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Problem 6. 2n distinct tokens are placed at the vertices of a regular 2n-gon, with one token
placed at each vertex. A move consists of choosing an edge of the 2n-gon and interchanging the
two tokens at the endpoints of that edge. Suppose that after a finite number of moves, every pair
of tokens have been interchanged exactly once. Prove that some edge has never been chosen.

(Russia) Alexander Gribalko

Solution. Step 1. Enumerate all the tokens in the initial arrangement in clockwise circular
order; also enumerate the vertices of the 2n-gon accordingly. Consider any three tokens i < j < k.
At each moment, their cyclic order may be either i, j, k or i, k, j, counted clockwise. This order
changes exactly when two of these three tokens have been switched. Hence the order has been
reversed thrice, and in the final arrangement token k stands on the arc passing clockwise from
token i to token j. Thus, at the end, token i + 1 is a counter-clockwise neighbor of token i
for all i = 1, 2, . . . , 2n − 1, so the tokens in the final arrangement are numbered successively in
counter-clockwise circular order.

This means that the final arrangement of tokens can be obtained from the initial one by
reflection in some line `.

Step 2. Notice that each token was involved into 2n−1 switchings, so its initial and final vertices
have different parity. Hence ` passes through the midpoints of two opposite sides of a 2n-gon; we
may assume that these are the sides a and b connecting 2n with 1 and n with n+ 1, respectively.

During the process, each token x has crossed ` at least once; thus one of its switchings has
been made at edge a or at edge b. Assume that some two its switchings were performed at a
and at b; we may (and will) assume that the one at a was earlier, and x ≤ n. Then the total
movement of token x consisted at least of: (i) moving from vertex x to a and crossing ` along a;
(ii) moving from a to b and crossing ` along b; (iii) coming to vertex 2n + 1 − x. This tales at
least x+ n+ (n− x) = 2n switchings, which is impossible.

Thus, each token had a switching at exactly one of the edges a and b.

Step 3. Finally, let us show that either each token has been switched at a, or each token has
been switched at b (then the other edge has never been used, as desired). To the contrary, assume
that there were switchings at both a and at b. Consider the first such switchings, and let x and y
be the tokens which were moved clockwise during these switchings and crossed ` at a and b,
respectively. By Step 2, x 6= y. Then tokens x and y initially were on opposite sides of `.

Now consider the switching of tokens x and y; there was exactly one such switching, and
we assume that it has been made on the same side of ` as vertex y. Then this switching has
been made after token x had traced a. From this point on, token x is on the clockwise arc from
token y to b, and it has no way to leave out from this arc. But this is impossible, since token y
should trace b after that moment. A contradiction.

Remark. The same statement for (2n−1)-gon is also valid. The problem is stated for a polygon
with an even number of sides only to avoid case consideration.

Let us outline the solution in the case of a (2n − 1)-gon. We prove the existence of line `
as in Step 1. This line passes through some vertex x, and through the midpoint of the opposite
edge a. Then each token either passes through x, or crosses ` along a (but not both; this can be
shown as in Step 2). Finally, since a token is involved into an even number of moves, it passes
through x but not through a, and a is never used.
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