S.-T. Yau College Student Mathematics Contests 2013

Analysis and Differential Equations Individual

Please solve 5 out of the following 6 problems.

1. Suppose that f is an integrable function on \mathbf{R}^{d}. For each $\alpha>0$, let $E_{\alpha}=\{x| | f(x) \mid>\alpha\}$. Prove that:

$$
\int_{\mathbf{R}^{d}}|f(x)| d x=\int_{0}^{\infty} m\left(E_{\alpha}\right) d \alpha
$$

2. Let $p(z)$ be a polynomial of degree $d \geq 2$, with distinct roots $a_{1}, a_{2}, \cdots, a_{d}$. Show that

$$
\sum_{i=1}^{d} \frac{1}{p^{\prime}\left(a_{i}\right)}=0
$$

3. Let α be a number such that α / π is not a rational number. Show that:
1) $\lim _{N \rightarrow \infty} \Sigma_{n=1}^{N} e^{i k(x+n \alpha)}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k t} d t$.
2) For every continuous periodic function $f: \mathbf{R} \rightarrow \mathbf{C}$ of period 2π, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \Sigma_{n=1}^{N} f(x+n \alpha)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t .
$$

4. Let u be a positive harmonic function over the punctured complex plane $\mathbf{C} /\{0\}$. Show that u must be a constant function.
5. Suppose $H=L^{2}(B), B$ is the unit ball in \mathbf{R}^{d}. Let $K(x, y)$ be a measurable function on $B \times B$ that satisfies

$$
|K(x, y)| \leq A|x-y|^{-d+\alpha}
$$

for some $\alpha>0$, whenever $x, y \in B$. Define

$$
T f(x)=\int_{B} K(x, y) f(y) d y
$$

(a) Prove that T is a bounded operator on H.
(b) Prove that T is compact.
6. Let A be a $n \times n$ real non-degenerate symmetric matrix. For $\lambda \in \mathbf{R}^{+}$, we define: $\int_{\mathbf{R}} \exp \left(i \lambda x^{2}\right) d x=\lim _{\epsilon \rightarrow 0^{+}} \int_{-\infty}^{\infty} \exp \left(i \lambda x^{2}-\frac{1}{2} \epsilon x^{2}\right) d x$. Show that:

$$
\begin{gathered}
\int_{\mathbf{R}^{n}} \exp \left(i \frac{\lambda}{2}<A x, x>-i<x, \xi>\right) d x \\
=\left(\frac{2 \pi}{\lambda}\right)^{n / 2}|\operatorname{det}(A)|^{-1 / 2} \exp \left(-\frac{i}{2 \lambda}<A^{-1} \xi, \xi>\right) \exp \left(\frac{i \pi}{4} \operatorname{sgn} A\right) .
\end{gathered}
$$

Here $\lambda \in \mathbf{R}^{+}, \xi \in \mathbf{R}^{n}, \operatorname{sgn}(A)=\nu_{+}(A)-\nu_{-}(A), \nu_{+}(A)\left(\nu_{-}(A)\right)$ is the number of positive (negative) eigenvalues of A.

