Applied Math. and Computational Math. Individual

Please solve as many problems as you can!

1. We consider the wave equation $u_{t t}=\Delta u$ in $\mathbb{R}^{3} \times \mathbb{R}_{+}$.
(a): (5 pts) A right going pulse with speed 1
$u(x, y, z, t)=1$ for $t<x<t+1 ; \quad u(x, y, z, t)=0$ else
is clearly a solution to the wave equation. However, it is a discontinuous solution, explain in which sense it is a solution to the equation.
(b): (5 pts) Surprisingly, one can construct smooth progressive wave solutions with speed larger than 1. In astronomy this kind of wave known as superluminal wave. Try a solution of the form

$$
u(x, y, z, t)=v\left(\frac{x-c t}{\sqrt{c^{2}-1}}, y, z\right), \quad c \in \mathbb{R}^{3}, \quad|c|>1
$$

Derive an equation for v and show that there is a nontrivial solution with compact support in (y, z) for any fixed x, t.
(c): (5 pts) For any $R>0,0<t<R$, show that energy

$$
E(t):=\int_{|\vec{x}| \leq R-t}\left(\left|u_{t}(\cdot, t)\right|^{2}+|\nabla u(\cdot, t)|^{2}\right) d \vec{x}
$$

is a decreasing function.
(c): (10 pts) Show that smooth superluminal progressive wave solutions of the form

$$
u(\vec{x}, t)=v(\vec{x}-\vec{c} t), \vec{c} \in \mathbb{R}^{3}, \quad|\vec{c}|>1
$$

cannot have a finite energy.
Hint: Using (c) and look at the energy of the solution in various balls.
2. Finite time extinction and hyper-contractiveity are important properties in modeling of some physical and biology systems. The essence of estimates is given by the following problem for ODE.

Assume $y(t) \geq 0$ is a C^{1} function for $t>0$ satisfying $y^{\prime}(t) \leq \alpha-$ $\beta y(t)^{a}$ for $\alpha>0, \beta>0$, then
(a) (10 points) For $a>1, y(t)$ has the following hyper-contractive property

$$
y(t) \leq(\alpha / \beta)^{1 / a}+\left[\frac{1}{\beta(a-1) t}\right]^{\frac{1}{a-1}}, \quad \text { for } t>0
$$

(b) (2 points) For $a=1, y(t)$ decays exponentially

$$
y(t) \leq \alpha / \beta+y(0) e^{-\beta t} .
$$

(c) (10 points) For $a<1, \alpha=0, y(t)$ has finite time extinction, which means that there exists $T_{\text {ext }}$ such that $0<T_{\text {ext }} \leq \frac{y^{1-a}(0)}{\beta(1-a)}$ and that $y(t)=0$ for all $t>T_{\text {ext }}$.
3. Consider the speed v of a ball (density ρ, radius R) falling through a viscous fluid (density ρ_{f}, viscosity μ) with drag coefficient given by Stokes' law $\zeta=6 \pi R \mu$:

$$
\frac{4}{3} \pi R^{3} \rho \frac{d v}{d t}=\frac{4}{3} \pi R^{3}\left(\rho-\rho_{f}\right) g-\zeta v, \quad v(0)=v_{0}
$$

(a): (5 points) Nondimensionalize the equation by writing, $v(t)=$ $V \tilde{v}(\tilde{t})$ with $t=T \tilde{t}$. Select V, T (characteristic scales known as terminal velocity and settling time respectively) so that all coefficients in the ODE but one are equal to 1. Your equation will have a single dimensionless parameter given by the ratio of the initial speed v_{0} to the characteristic speed V.
(b): (2 points) Solve the nondimensional problem for $\tilde{v}(\tilde{t})$.
(c): (8 points) Describe the behavior of the solution if the initial speed v_{0} is (i) faster than and (ii) slower than the characteristic speed V. Compute the time to reach $\left(v_{0}+V\right) / 2$.
4. Let

$$
V_{h}=\left\{v:\left.v\right|_{I_{j}} \in P^{k}\left(I_{j}\right) \quad 1 \leq j \leq N\right\}
$$

where

$$
I_{j}=\left(x_{j-1}, x_{j}\right), \quad 1 \leq j \leq N
$$

with

$$
x_{j}=j h, \quad h=\frac{1}{N} .
$$

Here $P^{k}\left(I_{j}\right)$ denotes the set of polynomials of degree at most k in the interval I_{j}.

Recall the L^{2} projection of a function $u(x)$ into the space V_{h} is defined by the unique function $u_{h} \in V_{h}$ which satisfies

$$
\left\|u-u_{h}\right\| \leq\|u-v\| \quad \forall v \in V_{h}
$$

where the norm is the usual L^{2} norm. We assume $u(x)$ has at least $k+2$ continuous derivatives.
(1) (5 points) Prove the error estimate

$$
\left\|u-u_{h}\right\| \leq C h^{k+1}
$$

Explain how the constant C depends on the derivatives of $u(x)$.
(2) (10 points) If another function $\varphi(x)$ also has at least $k+2$ continuous derivatives, prove

$$
\left|\int_{0}^{1}\left(u(x)-u_{h}(x)\right) \varphi(x) d x\right| \leq C h^{2 k+2}
$$

Explain how the constant C depends on the derivatives of $u(x)$ and $\varphi(x)$.
5. (15 points) Let $G(V, E)$ be a simple graph of order n and δ the minimum degree of vertices. Suppose that the degree sum of any pair of nonadjacent vertices is at least n and $F \subset E$ with $|F| \leq\left\lfloor\frac{\delta-2}{2}\right\rfloor$. Let $G-F$ be the graph obtained from G by deleting the edges in F. Prove that
(1) $G-F$ is connected and
(2) $G-F$ is Hamiltonian.
6. (15 points) Let $\left(F_{n}\right)_{n}$ be the Fibonacci sequence. Namely, $F_{0}=$ $0, F_{1}=1, \ldots, F_{n+2}=F_{n+1}+F_{n}$.
Establish a relation between $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)^{n}$ and F_{n} and use it to design an efficient algorithm that for a given n computes the n-th Fibonacci number F_{n}. In particular, it must be more efficient than computing F_{n} in n consecutive steps.

Give an estimate on the number of steps of your algorithm.
Hint: Not that if m is even then

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{m}=\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{m / 2}\right)^{2}
$$

and if m is odd then

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{m}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{m-1} \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

and $m-1$ is even.

