## S.-T. Yau College Student Mathematics Contests 2013

## Geometry and Topology Individual <br> Please solve 5 out of the following 6 problems.

1. Find the homology and fundamental group of the space $X=S^{1} \times$ $S^{1} /\{p, q\}$ obtained from the torus by identifying two distinct points $p, q$ to one point.
2. Suppose $(X, d)$ is a compact metric space and $f: X \rightarrow X$ is a map so that $d(f(x), f(y))=d(x, y)$ for all $x, y \in X$. Show that $f$ is an onto map.
3. Let $M^{2}$ ba a complete regular surface and $K$ be the Gaussian curvature. Suppose $\sigma:[0, \infty) \rightarrow M$ is a geodesic such that $K(\sigma(t)) \leq f(t)$, where $f$ is a differentiable function on $[0, \infty)$. Prove that any solution $u(t)$ of the equation

$$
u^{\prime \prime}(t)+f(t) u(t)=0
$$

has a zero on $\left[0, t_{0}\right]$, where $\sigma\left(t_{0}\right)$ is the first conjugate point to $\sigma(0)$ along $\sigma$.
4. Let $g_{1}, g_{2}$ be Riemannian metrics on a differentiable manifold $M$, and denote by $R_{1}$ and $R_{2}$ their respective Riemannian curvature tensor. Suppose that $R_{1}(X, Y, Y, X)=R_{2}(X, Y, Y, X)$ holds for any tangent vectors $X, Y \in T_{p} M$. Show that $R_{1}(X, Y, Z, W)=R_{2}(X, Y, Z, W)$ for any $X, Y, Z, W \in T_{p} M$.
5. Let $M^{n}$ be an even dimensional, orientable Riemannian manifold with positive sectional curvature. Let $\sigma:[0, l] \rightarrow M$ be a closed geodesic, namely, $\sigma$ is a geodesic with $\sigma(0)=\sigma(l)$ and $\sigma^{\prime}(0)=\sigma^{\prime}(l)$. Show that there exist an $\epsilon>0$ and a smooth map $F:[0, l] \times(-\epsilon, \epsilon) \rightarrow$ $M$, such that $F(t, 0)=\sigma(t)$, and for any fixed $s \neq 0$ in $(-\epsilon, \epsilon), \sigma_{s}(t)=$ $F(t, s)$ is a closed smooth curve with length less than that of $\sigma$.
6. Let $\left(M^{2}, d s^{2}\right)$ be a minimal surface in $\mathbb{R}^{3}$, where $d s^{2}$ is the restriction of the Euclidean metric. Assume that the Gaussian curvature $K$ of $\left(M^{2}, d s^{2}\right)$ is negative. Denote by $\widetilde{K}$ the Gaussian curvature of the metric $\widetilde{d s^{2}}=-K d s^{2}$. Show that $\widetilde{K}=1$.

