Probability and Statistics Problems
 Individual

Please solve 5 out of the following 6 problems.

Problem 1. Let (X_{n}) be a sequence of random variables.
(1) Assume that $\sum_{n=0}^{\infty} P\left(\left|X_{n}\right|>n\right)<\infty$. Prove that $\lim \sup _{n \rightarrow \infty} \frac{\left|X_{n}\right|}{n} \leq 1$.
(2) Prove that $\left(X_{n}\right)$ converges in probability to 0 if and only if for certain $r>0$, $E\left[\frac{\left|X_{n}\right|^{r}}{1+\left|X_{n}\right|^{r}}\right] \rightarrow 0$.

Problem 2. Let X and Y be independent $N(0,1)$ random variables.
(1) Find $E[X+Y \mid X \geq 0, Y \geq 0]$;
(2) Find the distribution function of $X+Y$ given that $X \geq 0$ and $Y \geq 0$.
(Hint: For b) using the fact that $U=(X+Y) / \sqrt{2}$ and $V=(X-Y) / \sqrt{2}$ are independent and $N(0,1)$ distributed.)

Problem 3. Let $\left\{X_{n}\right\}$ be a sequence of independent and identically distributed continuous real valued random variables, and regard n as time. Let A_{n} be the following event:

$$
A_{n}=\left\{X_{n}=\max \left\{X_{1}, X_{2}, \cdots, X_{n}\right\}\right\} .
$$

We say that a maximum record occurs at n in such an event.
(1) Evaluate the probability $P\left(A_{n}\right)$.
(2) Denote by Y_{n} the number of maximum records occurred until time n, i.e.,

$$
Y_{n}=\text { the number of }\left\{1 \leq k \leq n: X_{k}=\max \left\{X_{1}, X_{2}, \cdots, X_{k}\right\}\right\} .
$$

Evaluate the expectation $E Y_{n}$ and the variance $D Y_{n}$.
Problem 4. Let $X=\left(X_{1}, \cdots, X_{n}\right)$ be an iid sample from an exponential density with mean θ. Consider testing $H_{0}: \theta=\theta_{0}$ vs. $H_{1}: \theta>\theta_{0}$. Let $P(X)=$ your p-value for an appropriate test.
(a) What is $E_{\theta_{0}}(P(X))$? Derive your answer explicitly.
(b) Derive $E_{\theta}(P(X))$ for $\theta \neq \theta_{0}$. Specifically, assuming only one sample, i.e. $n=1$, calculate $E_{\theta}(P(X))$ as explicitly as possible for $\theta \neq \theta_{0}$.
(c) When there is only one sample, is $E_{\theta}(P(X))$ a decreasing function of θ ? In general, can you prove your result for an arbitrary MLR family?

Problem 5. Let X_{1}, X_{2} be iid uniform on $\theta-\frac{1}{2}$ to $\theta+\frac{1}{2}$.
(a) Show that for any given $0<\alpha<1$, you can find $c>0$ such that

$$
P_{\theta}\{\bar{X}-c<\theta<\bar{X}+c\}=1-\alpha
$$

where \bar{X} is the sample mean.
(b) Show that for ϵ positive and sufficiently small

$$
P_{\theta}\left\{\bar{X}-c<\theta<\bar{X}+c| | X_{2}-X_{1} \mid \geq 1-\epsilon\right\}=1
$$

(c) The statement in (a) is used to assert that $\bar{X} \pm c$ is a $100(1-\alpha) \%$ confidence interval for θ. Does the assertion in (b) contradict this? If your sample observations are $X_{1}=1, X_{2}=2$, would you use the confidence interval in (a)?

Problem 6. Suppose you want to estimate the total number of enemy tanks in a war on the basis of the captured tanks. Assume without loss of generality that the tank serial numbers are $1,2, \cdots, N$, where N is the unknown total number of enemy tanks. Also assume the serial numbers of the n captured tanks are iid uniform on $1,2, \cdots, N$. (This is a simplified assumption which provides a good approximation if $n \ll N)$.
(a) Find the complete sufficient statistic.
(b) Suggest how you may find the minimum variance unbiased estimate of N.

