S.-T. Yau College Student Mathematics Contests 2014

Applied Math. and Computational Math. Individual

Please solve as many problems as you can!

1. (20 pts) Ming Antu (1692-1763) is one of the greatest Chinese/Mongolian mathematicians. In the 1730s, he first established and used what was later to be known as Catalan numbers (Euler (1707-1763) rediscovered them around 1756; Belgian mathematician Eugene Catalan (18141894) "rediscovered" them again in 1838),

$$
c_{n}=\frac{1}{n+1}\binom{2 n}{n}, \quad n=0,1,2, \cdots
$$

and Ming Antu derived the following half-angle formula in 1730:

$$
\sin ^{2} \frac{\theta}{2}=\sum_{n=1}^{\infty} c_{n-1}\left(\frac{\sin \theta}{2}\right)^{2 n}
$$

Prove this formula.

Hint: you may use generating function

$$
F(z)=\sum_{n=0}^{\infty} c_{n} z^{n}
$$

and show that $\sum_{m+k=n} c_{m} c_{k}=c_{n+1}$ and then show $z F(z)^{2}=F(z)-1$.
2. Many algorithms, including polynomial factorisation in finite fields, require to compute $\operatorname{gcd}\left(f(X), X^{N}-1\right)$ for a polynomial f of reasonably small degree n and a binomial $X^{N}-1$ of very large degree N. Since N is very large the direct application of the Euclid algorithm is very inefficient.

Questions:
(i) (10 pts) Suggest a more efficient approach the direct computation of $\operatorname{gcd}\left(f(X), X^{N}-1\right)$ via the Euclid algorithm.
(ii) (10 pts) Generalise it to $\operatorname{gcd}\left(f(X), A_{1} X^{N_{1}}+\ldots+A_{m} X^{N_{m}}+\right.$ A_{m+1}).

Hint: If for three polynomials f, g and h we have $g \equiv h(\bmod f)$ then

$$
\operatorname{gcd}(f, g)=\operatorname{gcd}(f, h)
$$

3. For solving the following partial differential equation

$$
\begin{equation*}
u_{t}+f(u)_{x}=0, \quad 0 \leq x \leq 1 \tag{1}
\end{equation*}
$$

where $f^{\prime}(u) \geq 0$, with periodic boundary condition, we can use the following semi-discrete upwind scheme

$$
\begin{equation*}
\frac{d}{d t} u_{j}+\frac{f\left(u_{j}\right)-f\left(u_{j-1}\right)}{\Delta x}=0, \quad j=1,2, \cdots, N \tag{2}
\end{equation*}
$$

with periodic boundary condition

$$
\begin{equation*}
u_{0}=u_{N}, \tag{3}
\end{equation*}
$$

where $u_{j}=u_{j}(t)$ approximates $u\left(x_{j}, t\right)$ at the grid point $x=x_{j}=j \Delta x$, with $\Delta x=\frac{1}{N}$.
(i) (15 pts) Prove the following L^{2} stability of the scheme

$$
\begin{equation*}
\frac{d}{d t} E(t) \leq 0 \tag{4}
\end{equation*}
$$

where $E(t)=\sum_{j=1}^{N}\left|u_{j}\right|^{2} \Delta x$.
(ii) (15 pts) Do you believe (4) is true for $E(t)=\sum_{j=1}^{N}\left|u_{j}\right|^{2 p} \Delta x$ for arbitrary integer $p \geq 1$? If yes, prove the result. If not, give a counter example.
4. Let A be an $n \times n$ matrix with real and positive eigenvalues and b be a given vector. Consider the solution of $A x=b$ by the following Richardson's iteration

$$
x^{(k+1)}=(I-\omega A) x^{(k)}+\omega b
$$

where ω is a damping coefficient. Let λ_{1} and λ_{n} be the smallest and the largest eigenvalues of A. Let $G_{\omega}=I-\omega A$.
(i) (4 points) Prove that the Richardson's iteration converges if and only if

$$
0<\omega<\frac{2}{\lambda_{n}} .
$$

(ii) (8 points) Prove that the optimal choice of ω is given by

$$
\omega_{\mathrm{opt}}=\frac{2}{\lambda_{1}+\lambda_{n}} .
$$

Prove also that

$$
\rho\left(G_{\omega}\right)= \begin{cases}1-\omega \lambda_{1} & \omega \leq \omega_{\mathrm{opt}} \\ \left(\lambda_{n}-\lambda_{1}\right) /\left(\lambda_{n}+\lambda_{1}\right) & \omega=\omega_{\mathrm{opt}} \\ \omega \lambda_{n}-1 & \omega \geq \omega_{\mathrm{opt}}\end{cases}
$$

where $\rho\left(G_{\omega}\right)$ is the spectral radius of G_{ω}.
(iii) (8 points) Prove that, if A is symmetric and positive definite, then

$$
\rho\left(G_{\omega_{\text {opt }}}\right)=\frac{\kappa_{2}(A)-1}{\kappa_{2}(A)+1}
$$

where $\kappa_{2}(A)$ is the spectral condition number of A.
5. (10 pts) For solving the following heat equation on interval

$$
\begin{equation*}
u_{t}=u_{x x}, \quad 0 \leq x \leq 1 \tag{5}
\end{equation*}
$$

with boundary condition

$$
\begin{equation*}
u(0)=u_{0}, \quad u(1)=u_{1} \tag{6}
\end{equation*}
$$

we first discretize the interval $[0,1]$ into N subintervals uniformly, that is, the mesh size $h=1 / N$. We choose a temporal step size k and approximate the solution $u(j h, n k)$ by $U_{j}^{n}, j=1, \ldots, N-1, n=0,1,2, \ldots$. Using the backward Euler method in time and central finite difference in space, the discrete function U_{j}^{n} satisfies:

$$
\begin{equation*}
U_{j}^{n+1}-U_{j}^{n}=\lambda\left(U_{j-1}^{n+1}-2 U_{j}^{n+1}+U_{j+1}^{n+1}\right), \quad j=1, \ldots, N-1, \tag{7}
\end{equation*}
$$

where $\lambda=k / h^{2}$, and

$$
U_{0}^{n+1}=u_{0}, U_{N}^{n+1}=u_{1} .
$$

Show that

$$
\begin{align*}
\frac{1}{2} \sum_{j=1}^{N-1}\left(\left(U_{j}^{n+1}\right)^{2}-\left(U_{j}^{n}\right)^{2}\right) & \leq-\lambda \sum_{j=1}^{N-2}\left(U_{j+1}^{n+1}-U_{j}^{n+1}\right)^{2} \\
& -\frac{\lambda}{2}\left(\left(U_{1}^{n+1}\right)^{2}+\left(U_{N-1}^{n+1}\right)^{2}\right)+\frac{\lambda}{2}\left(u_{0}^{2}+u_{1}^{2}\right) \tag{8}
\end{align*}
$$

