S.-T. Yau College Student Mathematics Contests 2014

Geometry and Topology Individual

Please solve 5 out of the following 6 problems.

1. Let X be the quotient space of S^{2} under the identifications $x \sim-x$ for x in the equator S^{1}. Compute the homology groups $H_{n}(X)$. Do the same for S^{3} with antipodal points of the equator $S^{2} \subset S^{3}$ identified.
2. Let $M \rightarrow \mathbb{R}^{3}$ be a graph defined by $z=f(u, v)$ where $\{u, v, z\}$ is a Descartes coordinate system in \mathbb{R}^{3}. Suppose that M is a minimal surface. Prove that:
(a) The Gauss curvature K of M can be expressed as

$$
K=\Delta \log \left(1+\frac{1}{W}\right), \quad W:=\sqrt{1+\left(\frac{\partial f}{\partial u}\right)^{2}+\left(\frac{\partial f}{\partial v}\right)^{2}}
$$

where Δ denotes the Laplacian with respect to the induce metric on M (i.e., the first fundamental form of M).
(b) If f is defined on the whole $u v$-plane, then f is a linear function (Bernstein theorem).
3. Let $M=\mathbb{R}^{2} / \mathbb{Z}^{2}$ be the two dimensional torus, L the line $3 x=7 y$ in \mathbb{R}^{2}, and $S=\pi(L) \subset M$ where $\pi: \mathbb{R}^{2} \rightarrow M$ is the projection map. Find a differential form on M which represents the Poincaré dual of S.
4. Let $p:(\tilde{M}, \tilde{g}) \rightarrow(M, g)$ be a Riemannian submersion. This is a submersion $p: \tilde{M} \rightarrow M$ such that for each $x \in \tilde{M}, D p: \operatorname{ker}^{\perp}(D p) \rightarrow$ $T_{p(x)}(M)$ is a linear isometry.
(a) Show that p shortens distances.
(b) If (\tilde{M}, \tilde{g}) is complete, so is (M, g).
(c) Show by example that if (M, g) is complete, (\tilde{M}, \tilde{g}) may not be complete.
5. Let $\Psi: M \rightarrow \mathbb{R}^{3}$ be an isometric immersion of a compact surface M into \mathbb{R}^{3}. Prove that $\int_{M} H^{2} d \sigma \geq 4 \pi$, where H is the mean curvature of M and $d \sigma$ is the area element of M.
6. The unit tangent bundle of S^{2} is the subset

$$
T^{1}\left(S^{2}\right)=\left\{(p, v) \in \mathbb{R}^{3} \mid\|p\|=1,(p, v)=0 \text { and }\|v\|=1\right\}
$$

Show that it is a smooth submanifold of the tangent bundle $T\left(S^{2}\right)$ of S^{2} and $T^{1}\left(S^{2}\right)$ is diffeomorphic to $\mathbb{R} P^{3}$.

