S.-T. Yau College Student Mathematics Contests 2014

Analysis and Differential Equations Team

Please solve 5 out of the following 6 problems.

1. Calculate the integral:

$$\int_0^\infty \frac{\log x}{1+x^2} dx.$$

- **2.** Construct an increasing function on \mathbb{R} whose set of discontinuities is precisely \mathbb{Q} .
- **3.** Prove that any bounded analytic function F over $\{z|r < |z| < R\}$ can be written as $F(z) = z^{\alpha}f(z)$, where f is an analytic function over the disk $\{z||z| < R\}$ and α is a constant.
- **4.** Let $D \subset \mathbb{R}^n$ be a bounded open set, $f: \bar{D} \to \bar{D}$ is a smooth map such that its Jacobian $\left| \frac{\partial f}{\partial x} \right| \equiv 1$, where \bar{D} denotes the closure of D. Prove
 - (a) for each small ball $B_{\epsilon}(x)$, there exists a positive integer k such that $f^{k}(B_{\epsilon}(x)) \cap B_{\epsilon}(x) \neq \emptyset$, where $B_{\epsilon}(x)$ denotes the ball centered at x with radius ϵ ;
 - (b) there exists $x \in \bar{D}$ and a sequence $k_1, k_2, \dots k_j, \dots$ such that $f^{k_j}(x) \to x$ as $k_j \to \infty$.
- **5.** Let u be a subharmonic function over a domain $\Omega \subset \mathbf{C}$, i.e., it is twice differentiable and $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \geq 0$. Prove that u achieves its maximum in the interior of Ω only when u is a constant.
- **6.** Suppose that $\phi \in C_0^{\infty}(\mathbf{R}^n)$, $\int_{\mathbf{R}^n} \phi dx = 1$. Let $\phi_{\epsilon}(x) = \epsilon^{-n} \phi(x/\epsilon)$, $x \in \mathbf{R}^n$, $\epsilon > 0$. Prove that if $f \in L^p(\mathbf{R}^n)$, $1 \le p < \infty$, then $f * \phi_{\epsilon} \to f$ in $L^p(\mathbf{R}^n)$, as $\epsilon \to 0$. It is not true for $p = \infty$.

Probability and Statistics Problems

Team

Please solve the following 5 problems.

Problem 1. Suppose that X_n converges to X in distribution and Y_n converges to a constant c in distribution. Show that

- (a) Y_n converges to c in probability;
- (b) X_nY_n converges to cX in distribution.

Problem 2. Let X and Y be two random variables with |Y| > 0, a.s.. Let Z = X/Y.

- (a) Assume the distribution function of (X, Y) has the density p(x, y). What is the density function of Z?
- (b) Assume X and Y are independent and X is N(0,1) distributed, Y has the uniform distribution on (0,1). Give the density function of Z.

Problem 3. Let (Ω, \mathcal{F}, P) be a probability space.

- (a) Let \mathcal{G} be a sub σ -algebra of \mathcal{F} , and $\Gamma \in \mathcal{F}$. Prove that the following properties are equivalent:
 - (i) Γ is independent of \mathcal{G} under P,
- (ii) for every probability Q on (Ω, \mathcal{F}) , equivalent to P, with dQ/dP being \mathcal{G} measurable, we have $Q(\Gamma) = P(\Gamma)$.
- (b) Let X, Y, Z be random variables and Y is integrable. Show that if (X, Y) and Z are independent, then E[Y|X, Z] = E[Y|X].

Problem 4. Let $X_1, ..., X_n$ be i.i.d. $N(0, \sigma^2)$, and let M be the mean of $|X_1|, ..., |X_n|$.

- 1. Find $c \in R$ so that $\hat{\sigma} = cM$ is a consistent estimator of σ .
- 2. Determine the limiting distribution for $\sqrt{n}(\hat{\sigma} \sigma)$.
- 3. Identify an approximate $(1 \alpha)\%$ confidence interval for σ .
- 4. Is $\hat{\sigma} = cM$ asymptotically efficient? Please justify your answer.

Problem 5. The shifted exponential distribution has the density function

$$f(y; \phi, \theta) = 1/\theta \exp\{-(u - \phi)/\theta\}, \qquad y > \phi, \theta > 0.$$

Let Y_1, \ldots, Y_n be a random sample from this distribution. Find the maximum likelihood estimator (MLE) of ϕ and θ and the limiting distribution of the MLE.

You may use the following Rényi representation of the order statistics: Let E_1, \ldots, E_n , be a random sample from the standard exponential distribution (i.e., the above distribution with $\phi = 0, \theta = 1$). Let $E_{(r)}$ denote the r-th order statistics. According to the Rényi representation,

$$E_{(r)} \stackrel{D}{=} \sum_{j=1}^{r} \frac{E_{j}}{n+1-j}, \qquad r = 1, \dots, n.$$

Here, the symbol $\stackrel{D}{=}$ denotes equal in distribution.

S.-T. Yau College Student Mathematics Contests 2014

Geometry and Topology Team

Please solve 5 out of the following 6 problems.

1. Compute the fundamental and homology groups of the wedge sum of a circle S^1 and a torus $T = S^1 \times S^1$.

2. Given a properly discontinuous action $F: G \times M \to M$ on a smooth manifold M, show that M/G is orientable if and only if M is orientable and $F(g,\cdot)$ preserves the orientation of M. Use this statement to show that the Möbius band is not orientable and that $\mathbb{R}P^n$ is orientable if and only if n is odd.

3. (a) Consider the space Y obtained from $S^2 \times [0,1]$ by identifying (x,0) with (-x,0) and also identifying (x,1) with (-x,1), for all $x \in S^2$. Show that Y is homeomorphic to the connected sum $\mathbb{R}P^3 \# \mathbb{R}P^3$.

(b) Show that $S^2 \times S^1$ is a double cover of the connected sum $\mathbb{R}P^3 \# \mathbb{R}P^3$.

4. Prove that a bi-invariant metric on a Lie group G has nonnegative sectional curvature.

5. Let M be the upper half-plane \mathbb{R}^2_+ with the metric

$$ds^2 = \frac{dx^2 + dy^2}{y^k}.$$

For which values of k is M complete?

6. Given any nonorientable manifold M show the existence of a smooth orientable manifold \overline{M} which is a double covering of M. Find \overline{M} when M is $\mathbb{R}P^2$ or the Möbius band.

Algebra and Number Theory Team

Solve 5 out of 6 problems, or the highest 5 scores will be counted.

Problem 1. Let the special linear group (of order 2)

$$\operatorname{SL}_2(\mathbb{R}) = \{ g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) : \det g = 1 \}$$

act on the upper half plane $\mathbb{H} = \{z = x + iy \in \mathbb{C} : y > 0\}$ linear fractionally:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}.$$

(a) (5 points) Prove that the action is transitive, i.e., for any two $z_1, z_2 \in \mathbb{H}$, there is $g \in \mathrm{SL}_2(\mathbb{R})$ such that $gz_1 = z_2$.

(b) (5 points) For a fixed $z \in \mathbb{H}$, prove that its stabilizer $G_z = \{g \in \mathrm{SL}_2(\mathbb{R}) : gz = z\}$ is isomorphic to $\mathrm{SO}_2(\mathbb{R}) = \{g \in M_2(\mathbb{R}) : gg^t = 1\}$, where g^t is the transpose of g.

(c)(10 points) Let \mathbb{Z} be the set of integers and let

$$\Gamma(2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{R}) : a, b, c, d \in \mathbb{Z}, \quad a - 1 \equiv d - 1 \equiv b \equiv c \equiv 0 \pmod{2} \right\}$$

be a discrete subgroup of $SL_2(\mathbb{R})$ (no need to prove this), and let it act on $\mathbb{Q} \cup \{\infty\}$ linearly fractionally as above. How many orbits does this action have? Give a representative for each orbit.

Problem 2. Let $p \geq 7$ be an odd prime number.

- (a) (5 points) (to warm up) Evaluate the rational number $\cos(\pi/7)\cdot\cos(2\pi/7)\cdot\cos(3\pi/7)$.
- (b) (15 points) Show that $\prod_{n=1}^{(p-1)/2} \cos(n\pi/p)$ is a rational number and determine its value.

Problem 3. (20 points, 10 points each) For any 3×3 matrix $A \in M_3(\mathbb{Q})$, let A^{db} be the 6×6 matrix

$$A^{db} := \left(\begin{array}{cc} 0 & I_3 \\ A & 0 \end{array} \right)$$

- (a) Express the characteristic and minimal polynomials of A^{db} over \mathbb{Q} in terms of the characteristic and minimal polynomial of A.
- (b) Suppose that $A, B \in M_3(\mathbb{Q})$ are such that A^{db} and B^{db} are conjugate in the sense that there exists an element $C \in GL_6(\mathbb{Q})$ such that $C \cdot A^{db} \cdot C^{-1} = B^{db}$. Are A and B conjugate? (Either prove this statement or give a counterexample.)

Problem 4. (20 points) Classify all groups of order 8.

Problem 5. Let V be a finite dimensional vector space over complex field \mathbb{C} with a non-degenerate symmetric bilinear form (,). Let

$$O(V) = \{ g \in GL(V) | (gu, gv) = (u, v), u, v \in V \}$$

be the orthogonal group.

(a) (10 points) Prove that

$$(V \otimes_{\mathbb{C}} V)^{O(V)} \cong \operatorname{End}_{O(V)}(V),$$

and construct one such isomorphism. Here O(V) acts on $V \otimes_{\mathbb{C}} V$ via $g(a \otimes b) = ga \otimes gb$, and $(V \otimes_{\mathbb{C}} V)^{O(V)}$ is the fixed point subspace of $V \otimes V$.

(b) (10 points) Prove that the fixed point subspace $(V \otimes_{\mathbb{C}} V)^{O(V)}$ is 1-dimensional.

Problem 6. (20 points) Let c be a non-zero rational integer.

(a) (6 points) Factorize the three variable polynomial

$$f(x, y, z) = x^3 + cy^3 + c^2z^3 - 3cxyz$$

over \mathbb{C} (you may assume $c = \theta^3$ for some $\theta \in \mathbb{C}$).

- (b) (7 points) When $c = \theta^3$ is a cube for some rational integer θ , prove that there are only finitely many integer solutions $(x, y, z) \in \mathbb{Z}^3$ to the equation f(x, y, z) = 1.
- (c) (7 points) When c is not a cube of any rational integers, prove that there infinitely many integer solutions $(x, y, z) \in \mathbb{Z}^3$ to the equation f(x, y, z) = 1.

Applied Math. and Computational Math. Team

Please solve as many problems as you can!

1. (15 pts)

Given a finite positive (Borel) measure $d\mu$ on [0, 1], define its sequence of moments as follows

$$c_j = \int_0^1 x^j d\mu(x), \quad j = 0, 1, \dots$$

Show that the sequence is *completely monotone* in the sense that that

$$(I-S)^k c_j \ge 0$$
 for all $j, k \ge 0$,

where S denotes the backshift operator given by $Sc_j = c_{j+1}$ for $j \ge 0$.

2. (20 pts)

We recall that a polynomial

$$f(X) = a_d X^d + a_{d-1} X^{d-1} + \dots + a_1 X + a_0 \in \mathbb{Z}[X]$$

is called an Eisenstein polynomial if for some prime p we have

- (i) $p \mid a_i \text{ for } i = 0, \ldots, d-1,$
- (ii) $p^2 \nmid a_0$,
- (iii) $p \nmid a_d$.

Eisenstein polynomials are well-know to be irreducible over \mathbb{Z} , so they can be used to construct explicit examples of irreducible polynomials.

Questions:

- (i) Prove that a composition f(g(X)) of two Eisenstein polynomials f and g is an Eisenstein polynomial again.
- (ii) Suggest a multivariate generalisation of the Eisenstein polynomials. That is, describe a class polynomials $F(X_1, \ldots, X_m)$ in terms of the divisibility properties of their coefficients that are guaranteed to be irreducible.
- 3. (20 pts) For solving the following partial differential equation

$$u_t + f(u)_x = 0, \qquad 0 \le x \le 1 \tag{1}$$

where $f'(u) \geq 0$, with periodic boundary condition, we can use the following semi-discrete discontinuous Galerkin method: Find $u_h(\cdot,t) \in V_h$ such that, for all $v \in V_h$ and $j = 1, 2, \dots, N$,

$$\int_{I_j} (u_h)_t v dx - \int_{I_j} f(u_h) v_x dx + f((u_h)_{j+1/2}^-) v_{j+1/2}^- - f((u_h)_{j-1/2}^-) v_{j-1/2}^+ = 0,$$
(2)

with periodic boundary condition

$$(u_h)_{1/2}^- = (u_h)_{N+1/2}^-; \quad (u_h)_{N+1/2}^+ = (u_h)_{1/2}^+,$$
 (3)

where $I_j = (x_{j-1/2}, x_{j+1/2}), 0 = x_{1/2} < x_{3/2} < \dots < x_{N+1/2} = 1,$ $h = \max_j (x_{j+1/2} - x_{j-1/2}), v_{j+1/2}^{\pm} = v(x_{j+1/2}^{\pm}, t), \text{ and}$

 $V_h = \{v : v|_{I_j} \text{ is a polynomial of degree at most } k \text{ for } 1 \leq j \leq N\}.$

Prove the following L^2 stability of the scheme

$$\frac{d}{dt}E(t) \le 0 \tag{4}$$

where $E(t) = \int_0^1 (u_h(x,t))^2 dx$.

4. Consider the linear system Ax = b. The GMRES method is a projection method which obtains a solution in the m-th Krylov subspace K_m so that the residual is orthogonal to AK_m . Let r_0 be the initial residual and let $v_0 = r_0$. The Arnoldi process is applied to build an orthonormal system v_1, v_2, \dots, v_{m-1} with $v_1 = Av_0/\|Av_0\|$. The approximate solution is obtained from the following space

$$K_m = \text{span}\{v_0, v_1, \cdots, v_{m-1}\}.$$

- (i) (5 points) Show that the approximate solution is obtained as the solution of a least-square problem, and that this problem is triangular.
- (ii) (5 points) Prove that the residual r_k is orthogonal to $\{v_1, v_2, \cdots, v_{k-1}\}$.
- (iii) (5 points) Find a formula for the residual norm.
- (iv) (5 points) Derive the complete algorithm.
- **5.** (10 pts)
 - (i) Set $x_0 = 0$. Write the recurrence

$$x_k = 2x_{k-1} + b_k, \quad k = 1, 2, \dots, n,$$

in a matrix form $A\vec{x} = \vec{b}$. For $b_1 = -1/3$, $b_k = (-1)^k$, $k = 2, 3, \dots, n$, verify that $x_k = (-1)^k/3$, $k = 1, 2, \dots, n$ is the exact solution.

(ii) Find A^{-1} and compute condition number of A in L^1 norm.