S.-T. Yau College Student Mathematics Contests 2014

Analysis and Differential Equations Team

Please solve 5 out of the following 6 problems.

1. Calculate the integral:

$$
\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x
$$

2. Construct an increasing function on \mathbb{R} whose set of discontinuities is precisely \mathbb{Q}.
3. Prove that any bounded analytic function F over $\{z|r<|z|<R\}$ can be written as $F(z)=z^{\alpha} f(z)$, where f is an analytic function over the disk $\{z \| z \mid<R\}$ and α is a constant.
4. Let $D \subset \mathbb{R}^{n}$ be a bounded open set, $f: \bar{D} \rightarrow \bar{D}$ is a smooth map such that its Jacobian $\left|\frac{\partial f}{\partial x}\right| \equiv 1$, where \bar{D} denotes the closure of D. Prove
(a) for each small ball $B_{\epsilon}(x)$, there exists a positive integer k such that $f^{k}\left(B_{\epsilon}(x)\right) \cap B_{\epsilon}(x) \neq \varnothing$, where $B_{\epsilon}(x)$ denotes the ball centered at x with radius ϵ;
(b) there exists $x \in \bar{D}$ and a sequence $k_{1}, k_{2}, \cdots k_{j}, \cdots$ such that $f^{k_{j}}(x) \rightarrow x$ as $k_{j} \rightarrow \infty$.
5. Let u be a subharmonic function over a domain $\Omega \subset \mathbf{C}$, i.e., it is twice differentiable and $\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} \geq 0$. Prove that u achieves its maximum in the interior of Ω only when u is a constant.
6. Suppose that $\phi \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right), \int_{\mathbf{R}^{n}} \phi d x=1$. Let $\phi_{\epsilon}(x)=\epsilon^{-n} \phi(x / \epsilon), x \in$ $\mathbf{R}^{n}, \epsilon>0$. Prove that if $f \in L^{p}\left(\mathbf{R}^{n}\right), 1 \leq p<\infty$, then $f * \phi_{\epsilon} \rightarrow f$ in $L^{p}\left(\mathbf{R}^{n}\right)$, as $\epsilon \rightarrow 0$. It is not true for $p=\infty$.

Probability and Statistics Problems

Team

Please solve the following 5 problems.

Problem 1. Suppose that X_{n} converges to X in distribution and Y_{n} converges to a constant c in distribution. Show that
(a) Y_{n} converges to c in probability;
(b) $X_{n} Y_{n}$ converges to $c X$ in distribution.

Problem 2. Let X and Y be two random variables with $|Y|>0$, a.s.. Let $Z=X / Y$.
(a) Assume the distribution function of (X, Y) has the density $p(x, y)$. What is the density function of Z ?
(b) Assume X and Y are independent and X is $N(0,1)$ distributed, Y has the uniform distribution on $(0,1)$. Give the density function of Z.

Problem 3. Let (Ω, \mathcal{F}, P) be a probability space.
(a) Let \mathcal{G} be a sub σ-algebra of \mathcal{F}, and $\Gamma \in \mathcal{F}$. Prove that the following properties are equivalent:
(i) Γ is independent of \mathcal{G} under P,
(ii) for every probability Q on (Ω, \mathcal{F}), equivalent to P, with $d Q / d P$ being \mathcal{G} measurable, we have $Q(\Gamma)=P(\Gamma)$.
(b) Let X, Y, Z be random variables and Y is integrable. Show that if (X, Y) and Z are independent, then $E[Y \mid X, Z]=E[Y \mid X]$.

Problem 4. Let X_{1}, \ldots, X_{n} be i.i.d. $N\left(0, \sigma^{2}\right)$, and let M be the mean of $\left|X_{1}\right|, \ldots,\left|X_{n}\right|$.

1. Find $c \in R$ so that $\hat{\sigma}=c M$ is a consistent estimator of σ.
2. Determine the limiting distribution for $\sqrt{n}(\hat{\sigma}-\sigma)$.
3. Identify an approximate $(1-\alpha) \%$ confidence interval for σ.
4. Is $\hat{\sigma}=c M$ asymptotically efficient? Please justify your answer.

Problem 5. The shifted exponential distribution has the density function

$$
f(y ; \phi, \theta)=1 / \theta \exp \{-(u-\phi) / \theta\}, \quad y>\phi, \theta>0
$$

Let Y_{1}, \ldots, Y_{n} be a random sample from this distribution. Find the maximum likelihood estimator (MLE) of ϕ and θ and the limiting distribution of the MLE.
You may use the following Rényi representation of the order statistics: Let E_{1}, \ldots, E_{n}, be a random sample from the standard exponential distribution (i.e., the above distribution with $\phi=0, \theta=1$). Let $E_{(r)}$ denote the r-th order statistics. According to the Rényi representation,

$$
E_{(r)} \stackrel{D}{=} \sum_{j=1}^{r} \frac{E_{j}}{n+1-j}, \quad r=1, \ldots, n .
$$

Here, the symbol $\stackrel{D}{=}$ denotes equal in distribution.
S.-T. Yau College Student Mathematics Contests 2014

Geometry and Topology

Team

Please solve 5 out of the following 6 problems.

1. Compute the fundamental and homology groups of the wedge sum of a circle S^{1} and a torus $T=S^{1} \times S^{1}$.
2. Given a properly discontinuous action $F: G \times M \rightarrow M$ on a smooth manifold M, show that M / G is orientable if and only if M is orientable and $F(g, \cdot)$ preserves the orientation of M. Use this statement to show that the Möbius band is not orientable and that $\mathbb{R} P^{n}$ is orientable if and only if n is odd.
3. (a) Consider the space Y obtained from $S^{2} \times[0,1]$ by identifying $(x, 0)$ with $(-x, 0)$ and also identifying $(x, 1)$ with $(-x, 1)$, for all $x \in$ S^{2}. Show that Y is homeomorphic to the connected sum $\mathbb{R} P^{3} \# \mathbb{R} P^{3}$.
(b) Show that $S^{2} \times S^{1}$ is a double cover of the connected sum $\mathbb{R} P^{3} \# \mathbb{R} P^{3}$.
4. Prove that a bi-invariant metric on a Lie group G has nonnegative sectional curvature.
5. Let M be the upper half-plane \mathbb{R}_{+}^{2} with the metric

$$
d s^{2}=\frac{d x^{2}+d y^{2}}{y^{k}} .
$$

For which values of k is M complete?
6. Given any nonorientable manifold M show the existence of a smooth orientable manifold \bar{M} which is a double covering of M. Find \bar{M} when M is $\mathbb{R} P^{2}$ or the Möbius band.

S.-T. Yau College Student Mathematics Contests 2014

Algebra and Number Theory Team

Solve 5 out of 6 problems, or the highest 5 scores will be counted.

Problem 1. Let the special linear group (of order 2)

$$
\mathrm{SL}_{2}(\mathbb{R})=\left\{g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}(\mathbb{R}): \operatorname{det} g=1\right\}
$$

act on the upper half plane $\mathbb{H}=\{z=x+i y \in \mathbb{C}: y>0\}$ linear fractionally:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) z=\frac{a z+b}{c z+d}
$$

(a) (5 points) Prove that the action is transitive, i.e., for any two $z_{1}, z_{2} \in \mathbb{H}$, there is $g \in \mathrm{SL}_{2}(\mathbb{R})$ such that $g z_{1}=z_{2}$.
(b) (5 points) For a fixed $z \in \mathbb{H}$, prove that its stabilizer $G_{z}=\left\{g \in \mathrm{SL}_{2}(\mathbb{R}): g z=z\right\}$ is isomorphic to $\mathrm{SO}_{2}(\mathbb{R})=\left\{g \in M_{2}(\mathbb{R}): g g^{t}=1\right\}$, where g^{t} is the transpose of g.
(c)(10 points) Let \mathbb{Z} be the set of integers and let

$$
\Gamma(2)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R}): a, b, c, d \in \mathbb{Z}, \quad a-1 \equiv d-1 \equiv b \equiv c \equiv 0 \quad(\bmod 2)\right\}
$$

be a discrete subgroup of $\mathrm{SL}_{2}(\mathbb{R})$ (no need to prove this), and let it act on $\mathbb{Q} \cup\{\infty\}$ linearly fractionally as above. How many orbits does this action have? Give a representative for each orbit.

Problem 2. Let $p \geq 7$ be an odd prime number.
(a) (5 points) (to warm up) Evaluate the rational number $\cos (\pi / 7) \cdot \cos (2 \pi / 7) \cdot \cos (3 \pi / 7)$.
(b) (15 points) Show that $\prod_{n=1}^{(p-1) / 2} \cos (n \pi / p)$ is a rational number and determine its value.

Problem 3. (20 points, 10 points each) For any 3×3 matrix $A \in M_{3}(\mathbb{Q})$, let $A^{d b}$ be the 6×6 matrix

$$
A^{d b}:=\left(\begin{array}{cc}
0 & I_{3} \\
A & 0
\end{array}\right)
$$

(a) Express the characteristic and minimal polynomials of $A^{d b}$ over \mathbb{Q} in terms of the characteristic and minimal polynomial of A.
(b) Suppose that $A, B \in M_{3}(\mathbb{Q})$ are such that $A^{d b}$ and $B^{d b}$ are conjugate in the sense that there exists an element $C \in G L_{6}(\mathbb{Q})$ such that $C \cdot A^{d b} \cdot C^{-1}=B^{d b}$. Are A and B conjugate? (Either prove this statement or give a counterexample.)

Problem 4. (20 points) Classify all groups of order 8.

Problem 5. Let V be a finite dimensional vector space over complex field \mathbb{C} with a nondegenerate symmetric bilinear form (,). Let

$$
O(V)=\{g \in \mathrm{GL}(V) \mid(g u, g v)=(u, v), u, v \in V\}
$$

be the orthogonal group.
(a) (10 points) Prove that

$$
\left(V \otimes_{\mathbb{C}} V\right)^{O(V)} \cong \operatorname{End}_{O(V)}(V)
$$

and construct one such isomorphism. Here $O(V)$ acts on $V \otimes_{\mathbb{C}} V$ via $g(a \otimes b)=$ $g a \otimes g b$, and $\left(V \otimes_{\mathbb{C}} V\right)^{O(V)}$ is the fixed point subspace of $V \otimes V$.
(b) (10 points) Prove that the fixed point subspace $\left(V \otimes_{\mathbb{C}} V\right)^{O(V)}$ is 1-dimensional.

Problem 6. (20 points) Let c be a non-zero rational integer.
(a) (6 points) Factorize the three variable polynomial

$$
f(x, y, z)=x^{3}+c y^{3}+c^{2} z^{3}-3 c x y z
$$

over \mathbb{C} (you may assume $c=\theta^{3}$ for some $\theta \in \mathbb{C}$).
(b) (7 points) When $c=\theta^{3}$ is a cube for some rational integer θ, prove that there are only finitely many integer solutions $(x, y, z) \in \mathbb{Z}^{3}$ to the equation $f(x, y, z)=1$.
(c) (7 points) When c is not a cube of any rational integers, prove that there infinitely many integer solutions $(x, y, z) \in \mathbb{Z}^{3}$ to the equation $f(x, y, z)=1$.

S.-T. Yau College Student Mathematics Contests 2014

Applied Math. and Computational Math.

Team

Please solve as many problems as you can!

1. (15 pts)

Given a finite positive (Borel) measure $d \mu$ on $[0,1]$, define its sequence of moments as follows

$$
c_{j}=\int_{0}^{1} x^{j} d \mu(x), \quad j=0,1, \ldots
$$

Show that the sequence is completely monotone in the sense that that

$$
(I-S)^{k} c_{j} \geq 0 \quad \text { for all } j, k \geq 0
$$

where S denotes the backshift operator given by $S c_{j}=c_{j+1}$ for $j \geq 0$.
2. (20 pts)

We recall that a polynomial

$$
f(X)=a_{d} X^{d}+a_{d-1} X^{d-1}+\cdots+a_{1} X+a_{0} \in \mathbb{Z}[X]
$$

is called an Eisenstein polynomial if for some prime p we have
(i) $p \mid a_{i}$ for $i=0, \ldots, d-1$,
(ii) $p^{2} \nmid a_{0}$,
(iii) $p \nmid a_{d}$.

Eisenstein polynomials are well-know to be irreducible over \mathbb{Z}, so they can be used to construct explicit examples of irreducible polynomials.

Questions:
(i) Prove that a composition $f(g(X))$ of two Eisenstein polynomials f and g is an Eisenstein polynomial again.
(ii) Suggest a multivariate generalisation of the Eisenstein polynomials. That is, describe a class polynomials $F\left(X_{1}, \ldots, X_{m}\right)$ in terms of the divisibility properties of their coefficients that are guaranteed to be irreducible.
3. (20 pts) For solving the following partial differential equation

$$
\begin{equation*}
u_{t}+f(u)_{x}=0, \quad 0 \leq x \leq 1 \tag{1}
\end{equation*}
$$

where $f^{\prime}(u) \geq 0$, with periodic boundary condition, we can use the following semi-discrete discontinuous Galerkin method: Find $u_{h}(\cdot, t) \in$ V_{h} such that, for all $v \in V_{h}$ and $j=1,2, \cdots, N$,
$\int_{I_{j}}\left(u_{h}\right)_{t} v d x-\int_{I_{j}} f\left(u_{h}\right) v_{x} d x+f\left(\left(u_{h}\right)_{j+1 / 2}^{-}\right) v_{j+1 / 2}^{-}-f\left(\left(u_{h}\right)_{j-1 / 2}^{-}\right) v_{j-1 / 2}^{+}=0$,
with periodic boundary condition

$$
\begin{equation*}
\left(u_{h}\right)_{1 / 2}^{-}=\left(u_{h}\right)_{N+1 / 2}^{-} ; \quad\left(u_{h}\right)_{N+1 / 2}^{+}=\left(u_{h}\right)_{1 / 2}^{+}, \tag{3}
\end{equation*}
$$

where $I_{j}=\left(x_{j-1 / 2}, x_{j+1 / 2}\right), 0=x_{1 / 2}<x_{3 / 2}<\cdots<x_{N+1 / 2}=1$, $h=\max _{j}\left(x_{j+1 / 2}-x_{j-1 / 2}\right), v_{j+1 / 2}^{ \pm}=v\left(x_{j+1 / 2}^{ \pm}, t\right)$, and
$V_{h}=\left\{v:\left.v\right|_{I_{j}}\right.$ is a polynomial of degree at most k for $\left.1 \leq j \leq N\right\}$.
Prove the following L^{2} stability of the scheme

$$
\begin{equation*}
\frac{d}{d t} E(t) \leq 0 \tag{4}
\end{equation*}
$$

where $E(t)=\int_{0}^{1}\left(u_{h}(x, t)\right)^{2} d x$.
4. Consider the linear system $A x=b$. The GMRES method is a projection method which obtains a solution in the m-th Krylov subspace K_{m} so that the residual is orthogonal to $A K_{m}$. Let r_{0} be the initial residual and let $v_{0}=r_{0}$. The Arnoldi process is applied to build an orthonormal system $v_{1}, v_{2}, \cdots, v_{m-1}$ with $v_{1}=A v_{0} /\left\|A v_{0}\right\|$. The approximate solution is obtained from the following space

$$
K_{m}=\operatorname{span}\left\{v_{0}, v_{1}, \cdots, v_{m-1}\right\} .
$$

(i) (5 points) Show that the approximate solution is obtained as the solution of a least-square problem, and that this problem is triangular.
(ii) (5 points) Prove that the residual r_{k} is orthogonal to $\left\{v_{1}, v_{2}, \cdots, v_{k-1}\right\}$.
(iii) (5 points) Find a formula for the residual norm.
(iv) (5 points) Derive the complete algorithm.
5. (10 pts)
(i) Set $x_{0}=0$. Write the recurrence

$$
x_{k}=2 x_{k-1}+b_{k}, \quad k=1,2, \cdots, n,
$$

in a matrix form $A \vec{x}=\vec{b}$. For $b_{1}=-1 / 3, b_{k}=(-1)^{k}, k=$ $2,3, \cdots, n$, verify that $x_{k}=(-1)^{k} / 3, k=1,2, \cdots, n$ is the exact solution.
(ii) Find A^{-1} and compute condition number of A in L^{1} norm.

