
The Work of Martin Hairer

Martin Hairer has made a major breakthrough in the study of stochastic
partial differential equations by creating a new theory that provides tools
for attacking problems that up to now had seemed impenetrable.

The subject of differential equations has its roots in the development
of calculus by Isaac Newton and Gottfried Leibniz in the 17th century. A
major motivation at that time was to understand the motion of the planets
in the solar system. Newton’s laws of motion can be used to formulate a
differential equation that describes, for example, the motion of the Earth
around the Sun. A solution to such an equation is a function that gives
the position of the Earth at any time t. In the centuries since, differential
equations have become ubiquitous across all areas of science and engineering
to describe systems that change over time.

A differential equation describing planetary motion is deterministic, mean-
ing that it determines exactly where a planet will be at a given time in the
future. Other differential equations are stochastic, meaning that they de-
scribe systems containing an inherent element of randomness. An example
is an equation that describes how a stock price will change over time. Such
an equation incorporates a term that represents fluctuations in the stock
market price. If one could predict exactly what the fluctuations would be,
one could predict the future stock price exactly (and get very rich!). How-
ever, the fluctuations, while having some dependence on the initial stock
price, are essentially random and unpredictable. The stock-price equation
is an example of a stochastic differential equation.

In the planetary-motion equation, the system changes with respect to
only one variable, namely, time. Such an equation is called an ordinary dif-
ferential equation (ODE). By contrast, partial differential equations (PDEs)
describe systems that change with respect to more than one variable, for
example, time and position. Many PDEs are nonlinear, meaning that the
terms in it are not simple proportions—for example, they might be raised to
an exponential power. Some of the most important natural phenomena are
governed by nonlinear PDEs, so understanding these equations is a major
goal for mathematics and the sciences. However, nonlinear PDEs are among
the most difficult mathematical objects to understand. Hairer’s work has
caused a great deal of excitement because it develops a general theory that
can be applied to a large class of nonlinear stochastic PDEs.

An example of a nonlinear stochastic PDE—and one that played an im-
portant role in Hairer’s work—is the KPZ equation, which is named for
Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang, the physicists who
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came up with the equation in 1986. The KPZ equation describes the evo-
lution over time of the interface between two substances. To get a feel for
the nature of this equation, consider the process of liquid crystal display
manufacturing. In a simplified model of this process, one imagines drops of
the liquid-crystal material being deposited between two closely aligned ver-
tical sheets of glass. The drops interact with other drops, adhering to each
other, merging, and spreading out as they settle to the bottom. At a scale
much smaller than the scale at which one views this process, the molecules
in the drops move in a random way. One can think of this random motion
as introducing “white noise” into the system. It creates a rough, irregular
interface between the air above and the material accumulating below. The
KPZ equation describes the evolution of this interface over time. Because it
includes a white-noise term to describe the random motion of the molecules,
the KPZ equation is a stochastic PDE. A solution to the KPZ equation
would provide, for any time t and any point along the bottom edge of the
glass, the height of the interface above that point.

The challenge the KPZ equation posed is that, although it made sense
from the point of view of physics, it did not make sense mathematically. A
solution to the KPZ equation should be a mathematical object that repre-
sents the rough, irregular nature of the interface. Such an object has no
smoothness; in mathematical terms, it is not differentiable. And yet two of
the terms in the KPZ equation call for the object to be differentiable. There
is a way to sidestep this difficulty by using an object called a distribution.
But then a new problem arises, because the KPZ equation is nonlinear: It
contains a square term, and distributions cannot be squared. For these rea-
sons, the KPZ equation was not well defined. Although researchers came up
with some technical tricks to ameliorate these difficulties for the special case
of the KPZ equation, the fundamental problem of its not being well defined
long remained an unresolved issue.

In a spectacular achievement, Hairer overcame these difficulties by de-
scribing a new approach to the KPZ equation that allows one to give a
mathematically precise meaning to the equation and its solutions. What is
more, in subsequent work he used the ideas he developed for the KPZ equa-
tion to build a general theory, the theory of regularity structures, that can be
applied to a broad class of stochastic PDEs. In particular, Hairer’s theory
can be used in higher dimensions (the KPZ equation has one spatial dimen-
sion because it models an idealization of the interface as a one-dimensional
curve).

The basic idea of Hairer’s approach to the KPZ equation is the following.
Instead of making the usual assumption that the small random effects occur
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on an infinitesimally small scale, he adopted the assumption that the random
effects occur on a scale that is small in comparison to the scale at which the
system is viewed. Removing the infinitesimal assumption, which Hairer
calls “regularizing the noise”, renders an equation that can be solved. The
resulting solution is not a solution to KPZ; rather, it can be used as the
starting point to construct a sequence of objects that, in the limit, converges
to a solution of KPZ. And Hairer proved a crucial fact: the limiting solution
is always the same regardless of the kind of noise regularization that is used.

Hairer’s general theory addresses other, higher-dimensional stochastic
PDEs that are not well defined. For these equations, as with KPZ, the
main challenge is that, at very small scales, the behavior of the solutions
is very rough and irregular. If the solution were a smooth function, one
could carry out a Taylor expansion, which is a way of approximating the
function by polynomials of increasingly higher degree. But the roughness of
the solutions means they are not well approximated by polynomials. What
Hairer did instead is to define objects, custom-built for the equation at hand,
that approximate the behavior of the solution at small scales. These objects
then play a role similar to polynomials in a Taylor expansion. At each
point, the solution will look like an infinite superposition of these objects.
The ultimate solution is then obtained by gluing together the pointwise
superpositions. Hairer established the crucial fact that the ultimate solution
does not depend on the approximating objects used to obtain it.

Prior to Hairer’s work, researchers had made a good deal of progress in
understanding linear stochastic PDEs, but there was a fundamental block
to addressing nonlinear cases. Hairer’s new theory goes a long way towards
removing that block. What is more, the class of equations to which the
theory applies contains several that are of central interest in mathematics
and science. In addition, his work could open the way to understanding the
phenomenon of universality. Other equations, when rescaled, converge to
the KPZ equation, so there seems to be some universal phenomenon lurking
in the background. Hairer’s work has the potential to provide rigorous
analytical tools to study this universality.

Before developing the theory of regularity structures, Hairer made other
outstanding contributions. For example, his joint work with Jonathan Mat-
tingly constitutes a significant advance in understanding a stochastic version
of the Navier-Stokes equation, a nonlinear PDE that describes wave motion.

In addition to being one of the world’s top mathematicians, Hairer is a
very good computer programmer. While still a school student, he created
audio editing software that he later developed and successfully marketed as
“the Swiss army knife of sound editing”. His mathematical work does not
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depend on computers, but he does find that programming small simulations
helps develop intuition.

With his commanding technical mastery and deep intuition about phys-
ical systems, Hairer is a leader in the field who will doubtless make many
further significant contributions.
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