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Problem 4. Let ABC be a triangle, let D be the touchpoint of the side BC and the incircle of
the triangle ABC, and let Jb and Jc be the incentres of the triangles ABD and ACD, respectively.
Prove that the circumcentre of the triangle AJbJc lies on the bisectrix of the angle BAC.

(Russia) Fedor Ivlev

Solution. Let the incircle of the triangle ABC meet CA and AB at points E and F , respectively.
Let the incircles of the triangles ABD and ACD meet AD at points X and Y , respectively. Then
2DX = DA+DB−AB = DA+DB−BF−AF = DA−AF ; similarly, 2DY = DA−AE = 2DX.
Hence the points X and Y coincide, so JbJc ⊥ AD.

Now let O be the circumcentre of the triangle AJbJc. Then ∠JbAO = π/2 − ∠AOJb/2 =
π/2 − ∠AJcJb = ∠XAJc = 1

2∠DAC. Therefore, ∠BAO = ∠BAJb + ∠JbAO = 1
2∠BAD +

1
2∠DAC = 1

2∠BAC, and the conclusion follows.
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Problem 5. Let p ≥ 5 be a prime number. For a positive integer k we denote by R(k) the
remainder of k when divided by p. Determine all positive integers a < p such that

m+R(ma) > a

for every m = 1, 2, . . . , p− 1.

(Bulgaria) Alexander Ivanov

Solution. The required integers are p − 1 along with all the numbers of the form bp/qc, q =
2, . . . , p− 1. In other words, these are p− 1, along with the numbers 1, 2, . . . , b√pc, and also the
(distinct) numbers bp/qc, q = 2, . . . ,

⌊√
p− 1

2

⌋
.

We begin by showing that these numbers satisfy the conditions in the statement. It is
readily checked that p−1 satisfies the required inequalities, since m+R(m(p−1)) = m+(p−m) =
p > p− 1 for all m = 1, . . . , p− 1.

Now, consider any number a of the form a = bp/qc, where q is an integer greater than 1 but
less than p; then p = aq+ r with 0 < r < q. Choose any integer m ∈ (0, p) and write m = xq+ y
with x, y ∈ Z, 0 < y ≤ q (notice that x is nonnegative). Then

R(ma) = R(ay + xaq) = R(ay + xp− xr) = R(ay − xr).

Since ay − xr ≤ ay ≤ aq < p, we obtain R(ay − xr) ≥ ay − xr and hence

m+R(ma) ≥ (xq + y) + (ay − xr) = x(q − r) + y(a+ 1) ≥ a+ 1

by q > r and y ≥ 1. Thus a satisfies the required condition.

Finally, we show that if an integer a ∈ (0, p − 1) satisfies the required condition then a is
indeed of the form a = bp/qc for some integer q ∈ (0, p). This is clear for a = 1, so we may (and
will) assume that a ≥ 2.

Write p = aq + r with q, r ∈ Z and 0 < r < a; since a ≥ 2 we have q < p/2. Choose
m = q + 1 < p; we have R(ma) = R(aq + a) = R(p+ (a− r)) = a− r, so

a < m+R(ma) = q + 1 + a− r,

which yields r < q+1. Moreover, if r = q, then p = q(a+1) which is impossible by 1 < a+1 < p.
Thus r < q, and we have

0 ≤ p

q
− a =

r

q
< 1,

which proves a = bp/qc.
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Problem 6. Given a positive integer n, determine the largest real number µ satisfying the
following condition: for every 4n-point configuration C in an open unit square U , there exists an
open rectangle in U , whose sides are parallel to those of U , which contains exactly one point of
C, and has an area greater than or equal to µ.

(Bulgaria) Nikolai Beluhov

Solution. The required maximum is 1
2n+2 . To show that the condition in the statement is

not met if µ > 1
2n+2 , let U = (0, 1) × (0, 1), choose a small enough positive ε, and consider the

configuration C consisting of the n four-element clusters of points
(

i
n+1±ε

)
×
(
1
2 ± ε

)
, i = 1, . . . , n,

the four possible sign combinations being considered for each i. Clearly, every open rectangle
in U , whose sides are parallel to those of U , which contains exactly one point of C, has area at
most

(
1

n+1 + ε
)
·
(
1
2 + ε

)
< µ if ε is small enough.

We now show that, given a finite configuration C of points in an open unit square U , there
always exists an open rectangle in U , whose sides are parallel to those of U , which contains

exactly one point of C, and has an area greater than or equal to µ0 =
2

|C|+ 4
.

To prove this, usage will be made of the following two lemmas whose proofs are left at the
end of the solution.

Lemma 1. Let k be a positive integer, and let λ <
1

bk/2c+ 1
be a positive real number. If

t1, . . ., tk are pairwise distinct points in the open unit interval (0, 1), then some ti is isolated
from the other tj by an open subinterval of (0, 1) whose length is greater than or equal to λ.

Lemma 2. Given an integer k ≥ 2 and positive integers m1, . . ., mk,

⌊m1

2

⌋
+

k∑
i=1

⌊mi

2

⌋
+
⌊mk

2

⌋
≤

k∑
i=1

mi − k + 2.

Back to the problem, let U = (0, 1)× (0, 1), project C orthogonally on the x-axis to obtain
the points x1 < · · · < xk in the open unit interval (0, 1), let `i be the vertical through xi, and let
mi = |C ∩ `i|, i = 1, . . . , k.

Setting x0 = 0 and xk+1 = 1, assume that xi+1 − xi−1 > (bmi/2c+ 1)µ0 for some index i,
and apply Lemma 1 to isolate one of the points in C∩`i from the other ones by an open subinterval
xi × J of xi × (0, 1) whose length is greater than or equal to µ0/(xi+1 − xi−1). Consequently,
(xi−1, xi+1)× J is an open rectangle in U , whose sides are parallel to those of U , which contains
exactly one point of C and has an area greater than or equal to µ0.

Next, we rule out the case xi+1 − xi−1 ≤ (bmi/2c + 1)µ0 for all indices i. If this were the
case, notice that necessarily k > 1; also, x1 − x0 < x2 − x0 ≤ (bm1/2c + 1)µ0 and xk+1 − xk <
xk+1 − xk−1 ≤ (bmk/2c+ 1)µ0. With reference to Lemma 2, write

2 = 2(xk+1 − x0) = (x1 − x0) +

k∑
i=1

(xi+1 − xi−1) + (xk+1 − xk)

<

((⌊m1

2

⌋
+ 1
)

+

k∑
i=1

(⌊mi

2

⌋
+ 1
)

+
(⌊mk

2

⌋
+ 1
))
· µ0

≤

(
k∑

i=1

mi + 4

)
µ0 = (|C|+ 4)µ0 = 2,

and thereby reach a contradiction.
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Finally, we prove the two lemmas.

Proof of Lemma 1. Suppose, if possible, that no ti is isolated from the other tj by an open
subinterval of (0, 1) whose length is greater than or equal to λ. Without loss of generality, we
may (and will) assume that 0 = t0 < t1 < · · · < tk < tk+1 = 1. Since the open interval (ti−1, ti+1)
isolates ti from the other tj , its length, ti+1 − ti−1, is less than λ. Consequently, if k is odd we

have 1 =
∑(k−1)/2

i=0 (t2i+2 − t2i) < λ
(
1 + k−1

2

)
< 1; if k is even, we have 1 < 1 + tk − tk−1 =∑k/2−1

i=0 (t2i+2 − t2i) + (tk+1 − tk−1) < λ
(
1 + k

2

)
< 1. A contradiction in either case.

Proof of Lemma 2. Let I0, respectively I1, be the set of all indices i in the range 2, . . ., k − 1
such that mi is even, respectively odd. Clearly, I0 and I1 form a partition of that range. Since
mi ≥ 2 if i is in I0, and mi ≥ 1 if i is in I1 (recall that the mi are positive integers),

k−1∑
i=2

mi =
∑
i∈I0

mi +
∑
i∈I1

mi ≥ 2|I0|+ |I1| = 2(k − 2)− |I1|, or |I1| ≥ 2(k − 2)−
k−1∑
i=2

mi.

Therefore,

⌊m1

2

⌋
+

k∑
i=1

⌊mi

2

⌋
+
⌊mk

2

⌋
≤ m1 +

(
k−1∑
i=2

mi

2
− |I1|

2

)
+mk

≤ m1 +

(
1

2

k−1∑
i=2

mi − (k − 2) +
1

2

k−1∑
i=2

mi

)
+mk

=
k∑

i=1

mi − k + 2. �

Remark. In case 4n is replaced by a positive integer k not divisible by 4, we do not yet know
the maximal µ satisfying the corresponding condition.
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