# The $7^{\text {th }}$ Romanian Master of Mathematics Competition 

Day 2: Saturday, February 28, 2015, Bucharest

Language: English

Problem 4. Let $A B C$ be a triangle, and let $D$ be the point where the incircle meets side $B C$. Let $J_{b}$ and $J_{c}$ be the incentres of the triangles $A B D$ and $A C D$, respectively. Prove that the circumcentre of the triangle $A J_{b} J_{c}$ lies on the angle bisector of $\angle B A C$.

Problem 5. Let $p \geq 5$ be a prime number. For a positive integer $k$, let $R(k)$ be the remainder when $k$ is divided by $p$, with $0 \leq R(k) \leq p-1$. Determine all positive integers $a<p$ such that, for every $m=1,2, \ldots, p-1$,

$$
m+R(m a)>a
$$

Problem 6. Given a positive integer $n$, determine the largest real number $\mu$ satisfying the following condition: for every set $C$ of $4 n$ points in the interior of the unit square $U$, there exists a rectangle $T$ contained in $U$ such that

- the sides of $T$ are parallel to the sides of $U$;
- the interior of $T$ contains exactly one point of $C$;
- the area of $T$ is at least $\mu$.

Each of the three problems is worth 7 points.
Time allowed $4 \frac{1}{2}$ hours.

