
S.-T. Yau College Student Mathematics Contests 2015

Analysis and Differential Equations
Team

Please solve 5 out of the following 6 problems.

1. Let ϕ ∈ C([a, b], R). Suppose for every function h ∈ C1([a, b], R), h(a) = h(b) = 0,
we have ∫ b

a

ϕ(x)h(x)dx = 0.

Prove that ϕ(x) = 0.

2. Let f be a Lebesgue integrable function over [a, b+ δ], δ > 0, prove that

lim
h→0+

∫ b

a

|f(x+ h)− f(x)|dx → 0.

3. Let L(q, q
′
, t) be a function of (q, q

′
, t) ∈ TU × R,U is an open domain in Rn. Let

γ : [a, b] → U be a curve in U . Define a functional S(γ) =
∫ b

a
L(γ(t), γ

′
(t), t)dt. We say

that γ is an extremal if for every smooth variation of γ, ϕ(t, s), s ∈ (−δ, δ), ϕ(t, 0) =

γ(t), ϕs = ϕ(t, s), we have dS(ϕs)
ds

|s=0 = 0. Prove that every extremal γ satisfies the

Euler-Lagrange equation: d
dt
( ∂L
∂q′

) = ∂L
∂q
.

4. Let f : U → U be a holomorphic function with U a bounded domain in the complex
plane. Assuming 0 ∈ U, f(0) = 0, f

′
(0) = 1, prove that f(z) = z.

5. Let T : H1 → H2 be a bounded operator of Hilbert spaces H1, H2. Let S : H1 → H2

be a compact operator, that is, for every bounded sequence {vn} ∈ H1, Svn has a con-

verging subsequence. Show that Coker(T + S) = H2/Im(T + S) is finite dimensional
and Im(T + S) is closed in H2. (Hint: Consider equivalent statements in terms of
adjoint operators.)

6. Let u ∈ C2(Ω̄),Ω ⊂ Rd is a bounded domain with a smooth boundary.
1) Let u be a solution of the equation ∆u = f, u|∂Ω = 0, f ∈ L2(Ω). Prove that there

is a constant C depends only Ω such that∫
Ω

(Σn
j=1(

∂u

∂xj

)2 + u2)dx ≤ C

∫
Ω

f 2(x)dx.

2) Let {un} be a sequence of harmonic functions on Ω, such that ||un||L2(Ω) ≤ M <
∞, for a constant M independent of n. Prove that there is a converging subsequence
{unk

} in L2(Ω).
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S.-T. Yau College Student Mathematics Contests 2015

Probability and Statistics

Team (5 problems)

Problem 1. One hundred passengers board a plane with exactly 100 seats. The first
passenger takes a seat at random. The second passenger takes his own seat if it is
available, otherwise he takes at random a seat among the available ones. The third
passenger takes his own seat if it is available, otherwise he takes at random a seat
among the available ones. This process continues until all the 100 passengers have
boarded the plane. What is the probability that the last passenger takes his own seat?

Problem 2. Assume a sequence of random variables Xn converges in distribution to a
random variableX. Let {Nt, t ≥ 0} be a set of positive integer-valued random variables,
which is independent of (Xn) and converges in probability to ∞ as t → ∞. Prove that
XNt converges in distribution to X as t → ∞.

Problem 3. Suppose T1, T2, . . . , Tn is a sequence of independent, identically distributed
random variables with the exponential distribution of the density function

p(x) =

{
e−x, x ≥ 0;

0, x < 0.

Let Sn = T1 + T2 + · · ·+ Tn. Find the distribution of the random vector

Vn =
{T1

Sn

,
T2

Sn

, · · · , Tn

Sn

}
.

Problem 4. Suppose that X and Z are jointly normal with mean zero and standard
deviation 1. For a strictly monotonic function f(·), cov(X,Z) = 0 if and only if
cov(X, f(Z)) = 0, provided the latter covariance exists. Hint: Z can be expressed
as Z = ρX + ε where X and ε are independent and ε ∼ N(0,

√
1− ρ2).

Problem 5. Consider the following penalized least-squares problem (Lasso):

1

2
∥Y −Xβ∥2 + λ∥β∥1

Let β̂ be a minimizer and ∆ = β̂ − β∗ for any given β∗. If λ > 2∥XT (Y − Xβ∗)∥∞,
show that

1. ∥Y −XT β̂∥2 − ∥Y −XTβ∗∥2 > −λ∥∆∥1.



2. ∥∆Sc∥1 ≤ 3∥∆S∥1, where S = {j : β∗
j ̸= 0} is the support of the vector β∗, Sc is

its complement set, ∆S is the subvector of ∆ restricted on the set S, and ∥∆S∥1
is its L1-norm.



S.-T. Yau College Student Mathematics Contests 2015

Geometry and Topology
Team

Please solve 5 out of the following 6 problems.

1. Let SO(3) be the set of all 3× 3 real matrices A with determinant 1 and satisfying
tAA = I, where I is the identity matrix and tA is the transpose of A. Show that SO(3)
is a smooth manifold, and find its fundamental group. You need to prove your claims.

2. Let X be a topological space. The suspension S(X) of X is the space obtained from
X× [0, 1] by contracting X×{0} to a point and contracting X×{1} to another point.
Describe the relation between the homology groups of X and S(X).

3. Let F : M → N be a smooth map between two manifolds. Let X1, X2 be smooth
vector fields on M and let Y1, Y2 be smooth vector fields on N . Prove that if Y1 = F∗X1

and Y2 = F∗X2, then F∗[X1, X2] = [Y1, Y2], where [ , ] is the Lie bracket.

4. Let M1 and M2 be two compact convex closed surfaces in R3, and f : M1 → M2 a
diffeomerphism such that M1 and M2 have the same inner normal vectors and Gauss
curvatures at the corresponding points. Prove that f is a translation.

5. Prove the second Bianchi identity:

Rijkl,h +Rijlh,k +Rijhk,l = 0

6. Let M1,M2 be two complete n-dimensional Riemannian manifolds and γi : [0, a] →
Mi are two arc length parametrized geodesics. Let ρi be the distance function to γi(0)
on Mi. Assume that γi(a) is within the cut locus of γi(0) and for any 0 ≤ t ≤ a we
have the inequality of sectional curvatures

K1(X1,
∂

∂γ1
) ≥ K2(X2,

∂

∂γ2
),

where Xi ∈ Tγi(t)Mi is any unit vector orthogonal to the tangent ∂
∂γi

.

Then
Hess(ρ1)(X̃1, X̃1) ≤ Hess(ρ2)(X̃2, X̃2),

where X̃i ∈ Tγi(a)Mi is any unit vector orthogonal to the tangent ∂
∂γi

(a).
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S.-T. Yau College Student Mathematics Contests 2015

Algebra and Number Theory

Team

This exam contains 6 problems. Please choose 5 of them to work on.

Problem 1. (20pt) Let V = Rn be an Euclidean space equipped with usual inner
product, and g an orthogonal matrix acting on V . For a ∈ V , let sa denote the
reflection

sa(x) := x− 2
(x, a)

(a, a)
a, ∀x ∈ V.

(1.1) (10pt) For a = (g − 1)b 6= 0, show that

ker(sag − 1) = ker(g − 1)⊕ Rb.

(1.2) (10pt) Show that g is a product of dim[(g − 1)V ] reflections.

Problem 2. (20pt) Let p and q be two distinct prime numbers. Let G be a non-abelian
finite group satisfying the following conditions:

1. all nontrivial elements have order either p or q;

2. The q-Sylow subgroup Hq is normal and is a nontrivial abelian group.

Show in steps the following statement:

The group G is of the form (Z/pZ) n (Z/qZ)n, where the action of 1 ∈ Z/pZ on
(Z/qZ)n ' Fnq is given by a matrix M(1) ∈ GLn(Fq) whose eigenvalues are all
primitive p-th roots of unities.

(2.1) (5pt) Let Hp denote a p-Sylow subgroup of G. Show that its inclusion into G
induces an isomorphism Hp

∼= G/Hq, and that G ' Hp nHq.

(2.2) (5pt) Let M : Hp−→Aut(Hq) ' GLn(Fq) be the homomorphism induced from
the conjugations. Show that for each 1 6= a ∈ Hp, M(a) is semisimple whose
eigenvalues are all primitive p-th roots of unities. In particular M is injective.

(2.3) (5pt) Show that if two nontrivial elements a, b ∈ Hp commute with each other,
then a = bn for some n ∈ N, and that Hp ' Z/pZ.

(2.4) (5pt) Complete the solution of the problem.
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Problem 3. (20pt) Let ζ be a root of unity satisfying an equation ζ = 1 + Nη for an
integer N ≥ 3 and an algebraic integer η. Show that ζ = 1.

Problem 4. (20pt) Let G be a finite group and (π, V ) a finite dimensional CG-module.
For n ≥ 0, let C[V ]n be the space of homogeneous polynomial functions on V of degree
n. For a simple G-representation ρ, denote by an(ρ) the multiplicity of ρ in C[V ]n.
Show that ∑

n≥0

an(ρ)tn =
1

|G|
∑
g∈G

χρ(g)

det(idV − π(g)t)
.

Problem 5. (20pt) Let A be an n × n complex matrix considered as an operator on
V = (Cn, (·, ·)) with standard hermitian form. Let A∗ = Āt be the hermitian transpose
of A:

(Ax, y) = (x,A∗y), ∀x, y ∈ Cn.

(5.1) (5pt) For any λ ∈ C, show the identity:

ker(A− λ)⊥ = (A∗ − λ̄)V.

(5.2) (15pt) Show the equivalence of the following two statements:

(a) A commutes with A∗;

(b) there is a unitary matrix U (in the sense U∗ = U−1), such that UAU−1 is
diagonal.

Problem 6. (20pt) Consider the polynomial f(x) = x5 − 80x+ 5.

(6.1) (5pt) Show that f is irreducible over Q;

(6.2) (15 pt) Show in steps that the split field K of f has Galois group G := Gal(K/Q)
isomorphic to S5, the symmetric group of 5 letters.

(a) (5pt) f = 0 has exactly two complex roots;

(b) (5pt) G can be embedded into S5 with image containing cycles (12345) and
(12);

(c) (5pt) G ' S5.
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S.-T. Yau College Student Mathematics Contests 2015

Applied Math. and Computational Math.
Team (5 problems)

Problem 1. Consider the elliptic interface problem

(a(x)ux)x = f, x ∈ (0, 1)

with the Dirichlet boundary condition

u(0) = u(1) = 0.

Here, f is a smooth function, the elliptic coefficient a(x) is discontinuous across an
interface point ξ, that is,

a(x) =

{
a0 for 0 < x < ξ
a1 for ξ < x < 1,

a0, a1 > 0 are positive constants, and 0 < ξ < 1 is an interface point. Across the
interface, we need to impose two jump conditions

u(ξ−) = u(ξ+), a(ξ−)ux(ξ−) = a(ξ+)ux(ξ+).

Question:

1. (25%) Design a numerical method to solve this problem. The method should
be at least first order. It is better to be high order (if your method is first order,
you get 20% points).

2. (75%) Prove your accuracy and convergence arguments (if your method is first
order, you get 60% points).

Problem 2. Let G be graph of a social network, where for each pair of members there
is either no connection, or a positive or a negative one.

An unbalanced cycle in G is a a cycle which have odd number of negative edges.
Traversing along such a cycle with social rules such as friend of enemy are enemy would
result in having a negative relation of one with himself!

A resigning in G at a vertex v of G is to switch the type (positive or negative) of all
edges incident to v.

Question: Show that one can switch all edge of G into positive edges using a sequence
resigning if and only if there is no unbalanced cycle in G.

Problem 3. We consider particles which are able to produce new particles of like kind.
A single particle forms the original, or zero, generation. Every particle has probability
pk (k = 0, 1, 2, . . . ) of creating exactly k new particles; the direct descendants of the
nth generation form the (n + 1)st generation. The particles of each generation act
independently of each other.
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Assume 0 < p0 < 1. Let P (x) =
∑

k≥0 pkx
k and µ = P ′(1) =

∑
k≥0 kpk be the

expected number of direct descendants of one particle. Prove that if µ > 1, then the
probability xn that the process terminates at or before the nth generation tends to the
unique root σ ∈ (0, 1) of equation σ = P (σ).

Problem 4. (Isopermetric inequality). Consider a closed plane curve described by a
parametric equation (x(t), y(t)), 0 ≤ t ≤ T with parameter t oriented counterclockwise
and (x(0), y(0)) = (x(T ), y(T )).

(a): Show that the total length of the curve is given by

L =

∫ T

0

√
(x′(t))2 + (y′(t))2) dt

(b): Show that the total area enclosed by the curve is given by

A =
1

2

∫ T

0

(
x(t)y′(t)− y(t)x′(t)

)
dt

(c): The classical iso-perimetric inequality states that for closed plane curves
with a fixed length L, circles have the largest enclosed area A. Formulate this
question into a variational problem.

(d): Derive the Euler-Lagrange equation for the variational problem in (c).
(e): Show that there are two constants x0 and y0 such that

(x(t)− x0)
2 + (y(t)− y0)

2 ≡ r2

where r = L/(2π). Explain your result.

Problem 5. Let A ∈ Rn×m with rank r < min(m,n). Let A = UΣV T be the SVD of
A, with singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

(a) Show that, for every ϵ > 0, there is a full rank matrix Aϵ ∈ Rn×m such that
||A− Aϵ||2 = ϵ.

(b) Let Ak = UΣkV
T where Σk = diag(σ1, . . . , σk, 0, . . . , 0) and 1 ≤ k ≤ r − 1.

Show that rank(Ak) = k and

σk+1 = ||A− Ak||2 = min {||A−B||2 | rank(B) ≤ k}
(c) Assume that r = min(m,n). Let B ∈ Rn×m and assume that ||A − B||2 < σr.

Show that rank(B) = r.
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