S.-T. Yau College Student Mathematics Contests 2015

Algebra and Number Theory Individual (5 problems)

This exam of 160 points is designed to test how much you know rather than how much you don't know. You are not expected to finish all problems but do as much as you can.

Problem 1. (20 pt) Let G be an finite \mathbb{Z}-module (i.e., a finite abelian group with additive group law) with a bilinear, (strongly) alternative, and non-degenerate pairing

$$
\ell: G \times G \rightarrow \mathbb{Q} / \mathbb{Z}
$$

Here "(strongly) alternating" means for every $a \in G, \ell(a, a)=0$; "non-degenerate" means for every nonzero $a \in G$ there is a $b \in G$ such that $\ell(a, b) \neq 0$. Show in steps the following statement:
(S) : G is isomorphic to $H_{1} \oplus H_{2}$ for some finite abelian groups $H_{1} \simeq H_{2}$ such that $\left.\ell\right|_{H_{i} \times H_{i}}=0$.
(1.1) (5pt) For every $a \in G$, write $o(a)$ for the order of a and $\ell_{a}: G \longrightarrow \mathbb{Q} / \mathbb{Z}$ for the homomorphism $\ell_{a}(b)=\ell(a, b)$. Show that the image of ℓ_{a} is $o(a)^{-1} \mathbb{Z} / \mathbb{Z}$.
(1.2) (5pt) Show that G has a pair of elements a, b with the following properties:
(a) $o(a)$ is maximal in the sense that for any $x \in G, o(x) \mid o(a)$;
(b) $\ell(a, b)=o(a)^{-1} \bmod \mathbb{Z}$.
(c) $o(a)=o(b)$

We call the subgroup $<a, b\rangle:=\mathbb{Z} a+\mathbb{Z} b$ a maximal hyperbolic subgroup of G.
(1.3) (5pt) Let $\langle a, b\rangle$ be a maximal hyperbolic subgroup of G. Let G^{\prime} be the orthogonal complement of $\langle a, b\rangle$ consisting of elements $x \in G$ such that $\ell(x, c)=0$ for all $c \in\langle a, b\rangle$. Show that G is a direct sum as follows:

$$
G=\mathbb{Z} a \oplus \mathbb{Z} b \oplus G^{\prime}
$$

(1.4) (5pt) Finish the proof of (S) by induction.

Problem 2 (40pt). Let $\mathrm{O}_{n}(\mathbb{C})$ denote the group of $n \times n$ orthogonal complex matrices, and $M_{n \times k}(\mathbb{C})$ the space of $n \times k$ complex matrices, where n and k are two positive integers. For $i=0,1$, let F_{i} be the space of rational function f on $\mathrm{M}_{n \times k}(\mathbb{C})$ such that
$(*) \quad f(g x)=\operatorname{det}(g)^{i} f(x) \quad$ for all $g \in \mathrm{O}_{n}(\mathbb{C})$ and $x \in M_{n \times k}(\mathbb{C})$.
We want to study in steps the structures of F_{0} and F_{1}.
(2.1) (10pt) For each $x \in M_{n \times k}$, let V_{x} denote the subspace of \mathbb{C}^{n} generated by columns of x, and let $Q(x)=x^{t} \cdot x \in M_{k \times k}(\mathbb{C})$. Show the following are equivalent:
(a) the space V_{x} has dimension k, and the Euclidean inner product (\cdot, \cdot) is nondegenerate on V_{x} in the sense that $V_{x}^{\perp} \cap V_{x}=0$.
(b) $\operatorname{det} Q(x) \neq 0$.
(2.2) (10pt) Show that F_{0} is a field generated by entries of $Q(x)$.
(2.3) (10pt) Assuem $k<n$ and let $f \in F_{1}$. Show that $f=0$ by the following two steps:
(a) for any $x \in M_{n \times k}(\mathbb{C})$ with $\operatorname{det} Q(x) \neq 0$, construct a $g \in O_{n}(\mathbb{C})$ such that $\left.g\right|_{V_{x}}=1$ and $\operatorname{det} g=-1$.
(b) Show that f vanishes on a general point $x \in M_{n \times k}(\mathbb{C})$ with $\operatorname{det} Q(x) \neq 0$, thus $f \equiv 0$.
(2.4) (10 pt) Assume $k \geq n$. Show that F_{1} is a free vector space of rank 1 over F_{0}.

Problem 3. (40pt) Consider the equation $f(x):=x^{3}+x+1=0$. We want to show in steps that
for any prime p, if $\left(\frac{31}{p}\right)=-1$, then $x^{3}+x+1$ is solvable $\bmod p$.
Let x_{1}, x_{2}, x_{3} be three roots of $f(x):=x^{3}+x+1=0$. Let $F=\mathbb{Q}\left(x_{1}\right)$, and $L=$ $\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)$, and $K=\mathbb{Q}(\sqrt{\Delta})$ where Δ is the discriminant of $f(x)$:

$$
\Delta=\left[\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{1}\right)\right]^{2} .
$$

(3.1) (10pt) Show that f is irreducible, that $\Delta=-31$, and that F is not Galois over \mathbb{Q};
(3.2) (10pt) Show that $\operatorname{Gal}(L / \mathbb{Q}) \simeq S_{3}$, the permutation group of three letters, that $\operatorname{Gal}(L / K) \simeq \mathbb{Z} / 3 \mathbb{Z}$, and that $\operatorname{Gal}(L / F) \simeq \mathbb{Z} / 2 \mathbb{Z}$;
(3.3) (20pt) Let $O_{F}, O_{K}, O_{L}=$ be rings of integers of F, K, L respectively. Let p be a prime such that $x^{3}+x+1=0$ is not soluble in $\mathbb{Z} / p \mathbb{Z}$. Show the following:
(a) (5pt) $p O_{F}$ is still a prime ideal in O_{F},
(b) (5pt) $p O_{L}$ is product of two prime ideals in O_{L}, and
(c) $(5 \mathrm{pt}) p O_{K}$ is product of two primes ideals in O_{K}, and
(d) $(5 \mathrm{pt}) x^{2}+31=0$ is soluble in \mathbb{F}_{p}.

Problem 4. (40pt) Let p be a prime and \mathbb{Z}_{p} the ring of p-adic integers with a p-adic norm normalized by $|p|=p^{-1}$. Let $\phi: \mathbb{Z}_{p} \longrightarrow \mathbb{Z}_{p}$ be a map defined by a power series of the form

$$
\phi(x)=x^{p}+p \sum a_{n} x^{n}, \quad a_{n} \in \mathbb{Z}_{p}, \quad\left|a_{n}\right| \longrightarrow 0
$$

Let E be a field, and F the E-vector space of locally constant E-valued functions on \mathbb{Z}_{p} with an operator ϕ^{*} defined by $\phi^{*} f=f \circ \phi$. We want to show in steps the following statement:

The set of eigenvalues of ϕ^{*} on F is $\{0,1\}$.
(4.1) (10pt) Show that ϕ is a contraction map on each residue class $R \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}$:

$$
|\phi(x)-\phi(y)| \leq p^{-1}|x-y|, \quad \forall x, y \in R .
$$

(4.2) (10pt) Show that there is a $\epsilon_{R} \in R$ for each residue class R such that

$$
\lim _{n} \phi^{n}(x)=\epsilon_{R}, \quad \forall x \in R .
$$

Here ϕ^{n} is defined inductively by $\phi^{1}=\phi, \phi^{n}=\phi^{n-1} \circ \phi$.
(4.3) (10pt) Let F_{0} (resp. F_{1}) be the subspace of functions f vanishing on each ϵ_{R} (resp. constant on R) for all residue class R. Show that $\phi^{*}=1$ on F_{1}, and that for each $f \in F_{0} \phi^{* n} f=0$ for some $n \in \mathbb{N}$.
(4.4) (10pt) Show that for any $a \in E, a \neq 0,1$, the operator $\phi^{*}-a$ is invertible on F.

Problem 5 (20pt). Check if the following rings are UFD (unique factorization domain).
(5.1) (5pt) $R_{1}=\mathbb{Z}[\sqrt{6}]$;
(5.2) (5pt) $R_{2}=\mathbb{Z}[(1+\sqrt{-11}) / 2]$;
(5.3) (5pt) $R_{3}=\mathbb{C}[x, y] /\left(x^{2}+y^{2}-1\right)$;
(5.4) (5pt) $R_{4}=\mathbb{C}[x, y] /\left(x^{3}+y^{3}-1\right)$.

