S.-T. Yau College Student Mathematics Contests 2015

Applied Math. and Computational Math. Individual (5 problems)

Problem 1. Let r and s be relatively prime positive integers. Prove that the number of lattice paths from $(0,0)$ to (r, s), which consists of steps $(1,0)$ and $(0,1)$ and never go above the line $r y=s x$ is given by

$$
\frac{1}{r+s}\binom{r+s}{s}
$$

Problem 2. The following 2×2 block matrix

$$
C(\alpha)=\left[\begin{array}{cc}
\alpha I & A \\
A^{T} & 0
\end{array}\right]
$$

plays a key role in an augmented system method to solve linear least squares problem, a fundamental numerical linear algebra problem for fitting a linear model to observations subject to errors in science, where $A \in \mathbf{R}^{m \times n}$ is of full rank $n \leq m, I$ is a $m \times m$ identity matrix, and $\alpha \geq 0$. Prove the following results which address the question of optimal choice of scaling α for stabiltiy of the augmented system method.
(a) The eigenvalues of $C(\alpha)$ are

$$
\frac{\alpha}{2} \pm\left(\frac{\alpha^{2}}{4}+\sigma_{i}^{2}\right)^{1 / 2} \quad \text { for } i=1,2, \ldots, n, \quad \text { and } \quad \alpha \quad(m-n \text { times })
$$

where σ_{i} for $i=1,2, \ldots, n$ are the singular values of A, arranged in the decreasing order, i.e., $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$.
(b) The condition number $\kappa_{2}(C(\alpha))=\|C(\alpha)\|_{2}\left\|[C(\alpha)]^{-1}\right\|_{2}$ has the following bounds:

$$
\sqrt{2} \kappa_{2}(A) \leq \min _{\alpha} \kappa_{2}(C(\alpha)) \leq 2 \kappa_{2}(A)
$$

with $\min _{\alpha} \kappa_{2}(C(\alpha))$ being achieved for $\alpha=\sigma_{n} / \sqrt{2}$, and

$$
\max _{\alpha} \kappa_{2}(C(\alpha))>\kappa_{2}(A)^{2},
$$

where $\|\cdot\|$ is the spectral norm of a matrix.
Recall that any matrix $A \in \mathbf{R}^{m \times n}$ has a singular value decomposition (SVD):

$$
A=U \Sigma V^{T}, \quad \Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p}\right) \in \mathbf{R}^{m \times n}, \quad p=\min (m, n),
$$

where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p} \geq 0$, and $U \in \mathbf{R}^{m \times m}, V \in \mathbf{R}^{n \times n}$ are both orthogonal. The σ_{i} are the singular values of A and the columns of U and V are the left and right singular vectors of A, respectively.

Problem 3. Solve the following linear hyperbolic partial differential equation

$$
\begin{equation*}
u_{t}+a u_{x}=0, \quad t \geq 0, \tag{1}
\end{equation*}
$$

where a is a constant. Using the finite difference approximation, we can obtain the forward-time central-space scheme as follows,

$$
\begin{equation*}
\frac{u_{m}^{n+1}-u_{m}^{n}}{k}+a \frac{u_{m+1}^{n}-u_{m-1}^{n}}{2 h}=0, \tag{2}
\end{equation*}
$$

where k and h are temporal and spatial mesh sizes.
(a) Show that when we fix $\lambda=k / h$ as a positive constant, the forward-time centralspace scheme (2) is consistent with equation (1).
(b) Analyze the stability of this method. Is the method stable with $\lambda=k / h$ being fixed as a constant?
(c) How would the answer change if you are allowed to make $\lambda=k / h$ small?
(d) Would this is a good scheme to use even if you can make it stable by making λ small? If not, please provide a simple modification to make this scheme stable by keeping λ fixed.

Problem 4. Let $A, H, Q \in \mathbb{C}^{n \times n}$ and Q is non-singular. Assume that $H=Q^{-1} A Q$ and H is properly upper Hessenberg. Show that

$$
\operatorname{span}\left\{q_{1}, q_{2}, \ldots, q_{j}\right\}=\mathcal{K}_{j}\left(A, q_{1}\right), \quad j=1,2, \ldots, n
$$

where q_{j} is the j-th column of Q, and $\mathcal{K}_{j}\left(A, q_{1}\right)=\operatorname{span}\left\{q_{1}, A q_{1}, \ldots, A^{j-1} q_{1}\right\}$.

Problem 5. Minkowski Problem.

Assume P is a convex polyhedron embedded in \mathbb{R}^{3}, the faces are $\left\{F_{1}, F_{2}, \cdots, F_{k}\right\}$, the unit normal vector to the face F_{i} is \mathbf{n}_{i}, the area of F_{i} is $A_{i}, 1 \leq i \leq k$.

- Show that

$$
\begin{equation*}
A_{1} \mathbf{n}_{1}+A_{2} \mathbf{n}_{2}+\cdots A_{k} \mathbf{n}_{k}=\mathbf{0} \tag{3}
\end{equation*}
$$

- Given k unit vectors $\left\{\mathbf{n}_{1}, \mathbf{n}_{2}, \cdots, \mathbf{n}_{k}\right\}$ which can not be contained in any half space, and k real positive numbers $\left\{A_{1}, A_{2}, \cdots, A_{k}\right\}, A_{i}>0$, and satisfying the condition (3), show that there exists a convex polyhedron P, whose face normals are \mathbf{n}_{i} 's, face areas are A_{i} 's.

