S.-T. Yau College Student Mathematics Contests 2015

Probability and Statistics
 Individual (5 problems)

Problem 1. (a) Let X and Y be two random variables with zero means, variance 1, and correlation ρ. Prove that

$$
\mathbb{E}\left[\max \left\{X^{2}, Y^{2}\right\}\right] \leq 1+\sqrt{1-\rho^{2}}
$$

(b) Let X and Y have a bivariate normal distribution with zero means, variances σ^{2} and τ^{2}, respectively, and correlation ρ. Find the conditional expectation $\mathbb{E}(X \mid Y)$.

Problem 2. We flip a fair coin until heads turns out twice consecutively. What is the expected number of flips?

Problem 3. Let $\left(X_{n}, n \geq 1\right)$ be a sequence of independent Gaussian variables, with respective mean μ_{n}, and variance σ_{n}^{2}.
(a) Prove that if $\sum_{n} X_{n}^{2}$ converges in L^{1}, then $\sum_{n} X_{n}^{2}$ converges in L^{p}, for every $p \in[1, \infty)$.
(b) Assume that $\mu_{n}=0$, for every n. Prove that if $\sum_{n} \sigma_{n}^{2}=\infty$, then

$$
\mathbb{P}\left(\sum_{n} X_{n}^{2}=\infty\right)=1 .
$$

Problem 4. Let X_{1}, \ldots, X_{n} be a random sample of size n from the exponential distribution with pdf $f(x ; \theta)=\theta^{-1} \exp (-x / \theta)$ for $x, \theta>0$, zero elsewhere. Let $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$. Consider an estimator $n Y_{1}$.
(a) Show this estimate is unbiased.
(b) Prove or disprove: This estimate is a consistent estimator.
(c) Prove or disprove: This estimate is an efficient estimator.

Problem 5. Let the independent normal random variables Y_{1}, \ldots, Y_{n} have, respectively, the probability density functions $N\left(\mu, \gamma^{2} x_{i}^{2}\right), i=1, \ldots, n$, where the given x_{1}, \ldots, x_{n} are not all equal and no one of which is zero.
(a) Construct a confidence interval for γ with significance level $1-\alpha$.
(b) Discuss the test of the hypothesis $H_{0}: \gamma=1, \mu$ unspecified, against all alternatives $H_{1}: \gamma \neq 1, \mu$ unspecified.

